Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azomethine ylides cyclizations

Tandem Michael-Azomethine Ylide Cyclization Reactions... [Pg.1111]

Confalone and Earl have reported a series of intramolecular azomethine ylide cyclizations employing a-dithiolanyl aldehydes (Scheme 35).60 Thus, reaction of the aldehydes (115a-b) with ethyl sarcosinate at 140 C provided the 5,6-fused bicyclic pyrrolidines (116a-b), presumably via cyclization of the singly stabilized azomethine ylides. The dithiolanyl group could be removed by standard reactions this route then provides bicyclic pyrrolidines which cannot be prepared directly from enolizable aldehydes. [Pg.1136]

Very recently examples of tandem Michael-azomethine ylide cyclization reactions have been presented.626 Thus, divinyl sulfone reacted with imine (124) in the presence of lithium bromide and tri-ethylamine to give (126) in 40% yield (Scheme 38). Presumably formation of Michael adduct (125), tau-tomerization to an azomethine ylide and ensuing intramolecular [3 + 2] cycloaddition afforded (126). Indeed, (125) could be independently synthesized and converted to (126) under the reaction conditions. The preference for initial Michael addition, rather than cycloaddition, was variable. When (124) and divinyl sulfone were treated with silver acetate and triethylamine in DMSO, intermolecular azomethine cycloaddition occurred giving (127) in 27% yield. [Pg.1137]

An intramolecular azomethine ylide-mediated cyclization has been used to access the core 5 6 5 angular tricyclic structure of martinellic acid by Snider (Equation 113) <20010L4217>. Reaction of IV-benzylglycine 420 with the aldehyde 419 led to intramolecular cyclization, giving 421 in good yield. [Pg.757]

W(CO)6 in toluene at room temperature gave the tricyclic adduct 190a in 94% yield after acidic workup. This reaction forms the tungsten-containing azomethine ylide 191, which undergoes the [3 + 2]-cycloaddition with 189a. The rhodium(n)-catalyzed cyclization of the ene-yne-aldimine 192 with alkene 193 into the cyclopropane 194 was reported by Uemura and Ohe (Scheme 32).42c... [Pg.717]

The formation of the A-vinylaziridine 70 in the photoreaction of 68 deserves additional comment. Depending on the multiplicity, the intermediate 72 formed by path b could be a triplet 1,3-biradical. However, if intersystem crossing occurs along the reaction coordinate, the singlet biradical must be considered as a dipolar azomethine ylide. According to literature precedents, both intermediates, the 1,3-biradical and the ylide, will cyclize to form the observed aziridine. This is the first case in a DPM process where a zwitterion can be postulated as a possible intermediate. [Pg.22]

Enaminone 128 (Scheme 33) is obtained, together with an isomeric indo-lizine derivative, by flash vacuum thermolysis of aminomethylene Meldrum s acid derivative through intermediate ketene and delocalized azomethine ylide (85TL833). The thermally induced cyclization of semi-cyclic dienamines to afford, for instance, tricyclic 129 is also believed to start with an azomethine ylide (97JOC7744) the p-chlorophenyl substituent is essential for the reaction. Unstabilized ylide 130, on the other hand, is generated from pipecolinic acid and /1-phenylcinnamaldehyde by the decarboxylation method target base 131 is formed by 1,7-electrocycliza-tion and [l,5]-hydrogen shift (99J(P1)2605). [Pg.89]

Dodd and co-workers (5) reported the first known synthesis of 11//-indolizino[8,7-h]indoles by the cycloaddition reaction of a nonstabilized ylide 21 and diethylacetylene dicarboxylate (DEAD). The azomethine ylide, formed by the alkylation of the 3,4-dihydro-p-carboline (22) with trimethylsilyl methyl triflate to the triflate salt, followed by in situ desilyation with cesium fluoride, underwent cycloaddition with DEAD at low temperature. The expected major cycloadduct 23 was isolated, along with quantities of a minor product 24, presumed to have been formed by initial reaction of the ylide with 1 equiv of DEAD and the intermediate undergoing reaction with a further equivalent of DEAD before cyclization. Dodd offers no explanation for the unexpected position of the double bond in the newly generated five-membered ring, although it is most likely due to post-reaction isomerization to the thermodynamically more stable p-amino acrylate system (Scheme 3.5). [Pg.173]

The proposed reaction pathway invokes initial formation of carbonyl ylide 100 by intramolecular cyclization of the intermediate keto carbenoid onto the oxygen atom of the amide. Subsequent isomerization to the azomethine ylide is followed by 1,3-dipolar cycloaddition to DMAD to furnish the intermediate cycloadduct 101, which undergoes in situ alkoxy 1,3-shift to the final drhydropyrrolizine 102 (Scheme 3.28). [Pg.186]

During studies on the use of amidines as azomethine ylide sources, Jones et al. (67-69) reported in a series of papers the application of their general strategy to an asymmetric process. Quatemization of the dihydroimidazole 214 with an a-halo ester followed by DBU-induced ylide formation and subsequent cyclization furnished a range of nitrogen heterocycles in a one pot generation and cyclization protocol (70) (Scheme 3.73). [Pg.216]

In an extensive study into the application of the decarboxylative approach to azomethine ylides, Giigg reported the construction of numerous, complex polycyclic systems via an intramolecular protocol. Thiazolidine-4-carboxylic acid (263) was shown to react with 264 in refluxing toluene to furnish a 2 1 mixture of 265 and 266 in 63% yield (81). The reaction is assumed to occur via condensation of the aldehyde and amino acid to generate the imine 267, followed by cyclization to 268. Subsequent thermal decarboxylation of the ester generates either a syn dipole leading to 265 from an exo transition state, or an anti dipole and endo transition state generating adduct 266 (Scheme 3.90). [Pg.228]

The use of lithium amides to metalate the a-position of the N-substituent of imines generates 2-azaallyl anions, typically stabilized by two or three aryl groups (Scheme 11.2) (48-62), a process pioneered by Kauffmann in 1970 (49). Although these reactive anionic species may be regarded as N-lithiated azomethine ylides if the lithium metal is covalently bonded to the imine nitrogen, they have consistently been discussed as 2-azaallyl anions. Their cyclization reactions are characterized by their enhanced reactivity toward relatively unactivated alkenes such as ethene, styrenes, stilbenes, acenaphtylene, 1,3-butadienes, diphenylacetylene, and related derivatives. Accordingly, these cycloaddition reactions are called anionic [3+2] cycloadditions. Reactions with the electron-poor alkenes are rare (54,57). Such reactivity makes a striking contrast with that of N-metalated azomethine ylides, which will be discussed below (Section 11.1.4). [Pg.759]

The reaction mechanism proposed for the LiBr/NEta induced azomethine ylide cycloadditions to a,p-unsaturated carbonyl acceptors is illustrated in Scheme 11.10. The ( , )-ylides, reversibly generated from the imine esters, interact with acceptors under frontier orbital control, and the lithium atom of ylides coordinates with the carbonyl oxygen of the acceptors. Either through a direct cycloaddition (path a) or a sequence of Michael addition-intramolecular cyclization (path b), the cycloadducts are produced with endo- and regioselectivity. Path b is more likely, since in some cases Michael adducts are isolated. [Pg.765]


See other pages where Azomethine ylides cyclizations is mentioned: [Pg.1111]    [Pg.1327]    [Pg.1111]    [Pg.1327]    [Pg.196]    [Pg.410]    [Pg.151]    [Pg.49]    [Pg.166]    [Pg.514]    [Pg.89]    [Pg.302]    [Pg.347]    [Pg.758]    [Pg.172]    [Pg.4]    [Pg.271]    [Pg.497]    [Pg.605]   
See also in sourсe #XX -- [ Pg.1134 , Pg.1135 , Pg.1136 , Pg.1137 , Pg.1138 , Pg.1139 , Pg.1140 ]

See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Cyclizations ylides

© 2024 chempedia.info