Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azides conversion

Asymmetric introduction of azide to the a-position of a carbonyl has been achieved by several methods. These include amine to azide conversion by diazo transfer,2 chiral enolate azidation,3 and displacement of optically active trifluoromethanesulfonates,4 p-nitrobenzenesulfonates,5 or halides.6 Alkyl 2-azidopropionates have been prepared in optically active form by diazo transfer,2 p-nitrobenzenesulfonate displacement,5 and the Mitsunobu displacement using zinc azide.7 The method presented here is the simplest of the displacement methods since alcohol activation and displacement steps occur in the same operation. In cases where the a-hydroxy esters are available, this would be the simplest method to introduce azide. [Pg.18]

A similar sequence 109) has been used for an atisine synthesis starting with the dZ-acid CCCXIVb. Conversion to the acyl azide CCCXXIIb was effected by treatment with ethyl chloroformate and triethylamine followed by sodium azide. Conversion of the acyl azide CCCXXIIb to the lactam CCCXXIIIb was effected via intermediates CCCXXIIIb-CCCXXVb as in the previously described Garrya sequence. This sequence constitutes a simple high-yield construction of the basic tetracyclic atisine skeleton (109). [Pg.198]

Aminopyrrole 28 was generated by Yu in excellent yields firom malo-nonitrile and vinyl azides. Conversion to 28 proceeded smoothly without the need for a catalyst in a mixture of ethanol and water (13T1953).Takasu... [Pg.155]

Acyl azides may loose N2 on heating and rearrange to isocyanates (Curtius rearrangement), which may be solvolyzed. Some of the possibilities of classical carboxyl conversions are exemplified in the schemes below, which are taken from a triquinacene synthesis (R. Russo, 1971 C. Merder, 1973) and the ergotamine synthesis of A. Hofmann (1963). [Pg.143]

Metallic Pd is a good catalyst for the conversion of the primary azide 34 into the nitrile 35 in the presence of a hydrogen acceptor such as diphenylacety-lene[33]. By this method, organic halides can be converted into nitriles without increasing the carbon number. Reaction of the azidoformate 36 with an allylic... [Pg.532]

In pharmaceutical appHcations, the selectivity of sodium borohydride is ideally suited for conversion of high value iatermediates, such as steroids (qv), ia multistep syntheses. It is used ia the manufacture of a broad spectmm of products such as analgesics, antiarthritics, antibiotics (qv), prostaglandins (qv), and central nervous system suppressants. Typical examples of commercial aldehyde reductions are found ia the manufacture of vitamin A (29) (see Vitamins) and dihydrostreptomycia (30). An acyl azide is reduced ia the synthesis of the antibiotic chloramphenicol (31) and a carbon—carbon double bond is reduced ia an iatermediate ia the manufacture of the analgesic Talwia (32). [Pg.304]

Secondary amines having one oi two chiral groups attached to the nitrogen atom are prepared from boronic esters by their conversion into alkyldichlotobotanes, followed by treatment with organic azides (518). The second chiral group can be derived from an optically active azide. [Pg.323]

Nitrogen nucleophiles used to diplace the 3 -acetoxy group include substituted pyridines, quinolines, pyrimidines, triazoles, pyrazoles, azide, and even aniline and methylaniline if the pH is controlled at 7.5. Sulfur nucleophiles include aLkylthiols, thiosulfate, thio and dithio acids, carbamates and carbonates, thioureas, thioamides, and most importandy, from a biological viewpoint, heterocycHc thiols. The yields of the displacement reactions vary widely. Two general approaches for improving 3 -acetoxy displacement have been reported. One approach involves initial, or in situ conversion of the acetoxy moiety to a more facile leaving group. The other approach utilizes Lewis or Brmnsted acid activation (87). [Pg.32]

Special reactions of hydrazides and azides are illustrated by the conversion of the hydrazide (205) into the azide (206) by nitrous acid (60JOC1950) and thence into the urethane (207) by ethanol (64FES(19)105Q) the conversion of the same azide (206) into the N-alkylamide (208) by ethylamine the formation of the hydrazone (209) from acetaldehyde and the hydrazide (205) and the IV-acylation of the hydrazide (205) to give, for example, the formylhydrazide (210) (65FES(20)259). It is evident that there is an isocyanate intermediate between (206) and (207) such compounds have been isolated sometimes, e.g. (211). Several of the above reactions are involved in some Curtius degradations. [Pg.82]

The course of the photochemically mediated isomerization of vinylazirines is dependent on the stereochemistry of the vinyl group, as is illustrated in Scheme 94a (75JA4682). Under thermal conditions the isomerization proceeds through formation of the butadienylnitrene and subsequent pyrrole formation. Analogous conversions of azirines to indoles have also been effected (Scheme 94b). It is possible that some of the vinyl azide cyclizations discussed in Section 3.03.2.1 proceed via the azirine indeed, such an intermediate has been observed... [Pg.140]

Conversion o( organic azides with phosphines or phosphites to Immophosphoranes (phosphazo compounds) and their hydrolysis to amines. [Pg.359]

Table 5.7 lists the nucleophilic constants for a number of species according to this definition. It is apparent from Table 5.7 that nucleophilicity toward methyl iodide does not correlate directly with basicity. Azide ion, phenoxide ion, and bromide are all equivalent in nucleophilicity but differ greatly in basicity. Conversely, azide ion and acetate ion are... [Pg.291]

A potential advantage of the Schmidt reaction is illustrated by the conversion of progesterone to the 17j5-acetylamino derivative, without affecting the A-ring. A 35 % yield is obtained when 1 mole of sodium azide in polyphos-phoric acid is used. With excess azide the A-ring is transformed into an a,jS-unsaturated lactam ... [Pg.145]

Cyanogen azide is a useful reagent for conversion of pyrrolidine enamines of 3-keto steroids to A-norsteroids. " Ring contractions can be carried out in the presence of 17j5-hydroxy, 17j -acetoxy, 20-keto groups and isolated double bonds. In a typical procedure, 17j -hydroxy-5a-androstan-3-one (partial formula 8) is converted into the enamine (9) by pyrrolidine in benzene... [Pg.412]

A useful reaction sequence has been developed for conversion of an aromatic aldehyde into the next higher homologous acid. The nitro analog of 45, prepared from m-nitrobenzaldehyde, is converted into the azide 51 by hydrazinolysis and treatment with nitrous acid. The... [Pg.94]

The major application of the Mitsunobu reaction is the conversion of a chiral secondary alcohol 1 into an ester 3 with concomitant inversion of configuration at the secondary carbon center. In a second step the ester can be hydrolyzed to yield the inverted alcohol 4, which is enantiomeric to 1. By using appropriate nucleophiles, alcohols can be converted to other classes of compounds—e.g. azides, amines or ethers. [Pg.204]

The conversion of an alcohol to an amine can be achieved in a one-pot reaction the alcohol 1 is treated with hydrazoic azid (HN3), excess triphenylphosphine and diethyl azodicarboxylate (DEAD). The initial Mitsunobu product, the azide 14, further reacts with excess triphenylphosphine to give an iminophosphorane 15. Subsequent hydrolytic cleavage of 15 yields the amine—e.g. as hydrochloride 16 ... [Pg.206]

Incorporation of the phenethyl moiety into a carbocyclic ring was at first sight compatible with amphetamine-like activity. Clinical experience with one of these agents, tranylcypromine (79), revealed the interesting fact that this drug in fact possessed considerable activity as a monamine oxidase inhibitor and as such was useful in the treatment of depression. Decomposition of ethyl diazoacetate in the presence of styrene affords a mixture of cyclopropanes in which the trans isomer predominates. Saponification gives acid 77. Conversion to the acid chloride followed by treatment with sodium azide leads to the isocyanate, 78, via Curtius rearrangement. Saponification of 78 affords tranylcypromine (79). [Pg.73]

In general, azides are more easily available than rutro compounds by S 2 reacnon of the corresponding halides Thus, the direct conversion of an azide mto a nitro group is useful for the synthesis of nitro compounds Corey and coworkers have reported the easy cc azides to nitro compounds via ozonolysis of phosphine irrunes fEq 2 70 ... [Pg.25]

Curtius rearrangement (Section 24.6) The conversion of an acid chloride into an amine by reaction with azide ion, followed by heating with water. [Pg.1239]

Iodine azide, generated in situ from an excess of sodium azide and iodine monochloride in acetonitrile, adds to ethyl l//-azepine-l-carboxylate at the C4 — C5 and C2 —C3 positions to yield a 10 1 mixture of the rw-diazidodihydro-l//-azepines 1 and 2, respectively.278 The as stereochemistry of the products is thought to be the result of initial trans addition of the iodine azide followed by an SN2 azido-deiodination. The diazides were isolated and their stereochemistry determined by conversion to their bis-l,3-dipolar cycloadducts with dimethyl acetylene-dicarboxylate. [Pg.197]

Whereas currently most studies deal with azides, a similar effort devoted to other metal salts such as nitrates and chlorates would be an important step toward understanding electrical initiation of pyrotechnics, and conversely to making possible safe, non-expl igniters. For instance, a study by Maycock (Ref 4) shows that those azides, perchlorates, and nitrates in which the solid state shows absorption on the long wavelength side of the anionic excitation band in soln, are the most unstable members of the respective series. Consequently, there is a direct relationship between the absorption spectra of pyrotechnic oxidizers and their respective sensitivities... [Pg.997]

Conversion into Quinoxalinecarbonyl Azides and Derived Products... [Pg.326]

As a direct appUcation a potent C2-symmetric HIV-1 protease inhibitor (with two tetrazoles as carboxyl group bioisosteres) was prepared in one pot [77]. The process involved microwave-promoted cyanation followed by conversion of the nitrile group in a tetrazole with azide (Scheme 64). It is notable that the fimctionahzation was achieved so smoothly without side reactions such as the ehmination of water. [Pg.190]

Triazoles have been obtained via microwave-assisted [3-i-2] cycloaddition, under solvent-free conditions [54], starting from organic azides and acetylenic amides at 55 °C for 30 min (Scheme 23). The complete conversion of the reagents into AT-substituted-1,2,3-triazoles 69 was achieved without decomposition and side products. A control reaction carried out at the same temperature in an oil bath did not give the cycHc products, not even after 24 h of reaction time. [Pg.227]

Among the experiments that have been cited for the viewpoint that borderline behavior results from simultaneous SnI and Sn2 mechanisms is the behavior of 4-methoxybenzyl chloride in 70% aqueous acetone. In this solvent, hydrolysis (i.e., conversion to 4-methoxybenzyl alcohol) occurs by an SnI mechanism. When azide ions are added, the alcohol is still a product, but now 4-methoxybenzyl azide is another product. Addition of azide ions increases the rate of ionization (by the salt effect) but decreases the rate of hydrolysis. If more carbocations are produced but fewer go to the alcohol, then some azide must he formed by reaction with carbocations—an SnI process. However, the rate of ionization is always less than the total rate of reaction, so some azide must also form by an Sn2 mechanism. Thus, the conclusion is that SnI and Sn2 mechanisms operate simultaneously. ... [Pg.401]


See other pages where Azides conversion is mentioned: [Pg.469]    [Pg.444]    [Pg.487]    [Pg.152]    [Pg.158]    [Pg.487]    [Pg.327]    [Pg.337]    [Pg.938]    [Pg.214]    [Pg.469]    [Pg.444]    [Pg.487]    [Pg.152]    [Pg.158]    [Pg.487]    [Pg.327]    [Pg.337]    [Pg.938]    [Pg.214]    [Pg.388]    [Pg.538]    [Pg.81]    [Pg.416]    [Pg.138]    [Pg.150]    [Pg.43]    [Pg.95]   


SEARCH



Alcohols azide-based amine conversions

Azides, Mitsunobu reaction, alcohol-amine conversions

Azides, vinyl, conversion into 1-azirines

Boranes conversion to amines by azides

Conversion to azides

Diazonium ions conversion to aryl azides

Diphenylphosphoryl azide conversions

© 2024 chempedia.info