Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azides intramolecular 1,3-dipolar cycloaddition

Tetrazole synthesis from azides by dipolar cycloaddition with activated nitriles or intramolecularly with nitriles in the presence of acids (see 1st edition). [Pg.110]

Fused triazoles such as the D-arabinose-derived 112 were synthesized by intramolecular condensation of the 7-azide produced by displacement of the 7-tosylate from unsaturated ester 111 (Scheme 15)/ Triazole 114 was synthesized by intramolecular dipolar cycloaddition of the azido-alkyne 113, derived by... [Pg.151]

Intramolecular dipolar azide-olefin cycloaddition of 723 took place upon heating in benzene to afford 724 (83JA3273). An alternative rearrangement process can take place upon photolysis of 724 to give 725. Mesylation of 4-(3-hydroxypropyl)-2,4,6-trimethyl-2,5-cyclohexadiene-l-one (78JA4618) and subsequent treatment with sodium azide in DMF afforded the respective azide 726 which underwent intramolecular cycloaddition to afford the triazoline 727 (83JOC2432). Irradiation of 727 gave the triazole derivative 728 (Scheme 126). [Pg.164]

The only examples of fully unsaturated tetrazoloazepines, e.g. 3, have been prepared by an unusual and intriguing reaction involving the action of azide ion on 4,7-disulfonylbenzofurazan 1-oxides, e.g. I.148 A mechanistic rationale involving intramolecular 1,3-dipolar cycloaddition of an azidonitrile intermediate, e.g. 2, has been proposed. [Pg.243]

Keywords Intramolecular 1,3-dipolar cycloadditions. Stereoselectivity, Nitrile oxides, SUyl nitronates. Oximes, H-Nitrones, Azides, NitrUimines... [Pg.1]

Dipolar cycloaddition of azides with olefins provides a convenient access to triazolines, cyclic imines, and aziridines and hence is a valuable technique in heterocyclic synthesis. For instance, tricyclic -lactams 273 - 276 have been synthesized using the intramolecular azide-olefin cycloaddition (lAOC) methodology (Scheme 30) [71]. [Pg.39]

The nonsymmetrical quinolizidine 373 was obtained from the acyclic symmetrical precursor 372 by means of a reaction sequence comprising azide formation, intramolecular 1,3-dipolar cycloaddition, thermal triazoline fragmentation to a diazoalkane, and Michael addition individual steps, as shown in Scheme 85 <2005CC4661>. [Pg.54]

Another theoretical investigation deals with the intramolecular [3+2] dipolar cycloaddition (Huisgen reaction) of azides and nitriles (Scheme 2) to form tetrazoles <2003JOC9076>. [Pg.352]

Dipolar cycloaddition between azides and nitriles is also a well-established route to tetrazoles. If these two functional groups are closely located within one molecule, intramolecular cyclization can occur to yield fused tetrazoles. The present survey of the recent literature shows that this approach has also been successfully applied in some cases and led to the synthesis of novel ring systems belonging to this chapter. These results are depicted in Scheme 25. [Pg.659]

An interesting palladium-catalyzed allene/azide incorporation and intramolecular 1,3-dipolar cycloaddition cascade to tetrazolo[5,l-tf]isoquinoline has been published by Grigg et al. <2005TL5899>. In the first step of the events, 3-bromo-6-iodobenzonitrile 105 was reacted with the allene/trimethylsilylazide system in the presence of palladium(O) catalyst to yield a coupling product 106 which under the reaction conditions applied (DMF, 70 °C for 24 h) gave 107. [Pg.660]

A ring-closure reaction to the bicyclic triazolopyridine system implying intramolecular 1,3-dipolar cycloaddition was published by Couty et al. <2004TL3725>. The reaction pathway started from an /V-propargylaruinoalcohol 398, which was treated first with thionyl chloride followed by sodium azide to give the intermediate 399, which underwent the desired cyclization to afford the final product 400. Although in other related cases (cf. Chapter 11.15 for tetrazolopyrazines) the yields were acceptable, this nitrogen positional derivative was obtained only in 20% yield. [Pg.726]

Density functional theory methods using the hybrid B3LYP functionals have been performed to study geometries and energetics of several intramolecular [2+3] dipolar cycloadditions of azides to nitriles (Section 11.06.6.1) toward fused tetrazole formation, including tetrazoles 14 and 15 <2003JOC9076>. [Pg.945]

A subsequent report outlined the synthesis of a diastereomer of tetrazole 58 that used similar methodology <1997TL4655>. Treatment of nitrile mesylate 60 with sodium azide affords D-talonotetrazole 62, presumably by intramolecular [1,3] dipolar cycloaddition of a 4-azido-4-deoxy-D-talonitrile intermediate 61. Acid hydrolysis affords the deprotected tetrazole 63 (Scheme 5). [Pg.952]

In 1984, a facile synthesis of pyrrolo[3,4-/7]indole (5) as a stable indole-2,3-quinodimethane analogue using an intramolecular azide-alkene cycloaddition-cycloreversion strategy was reported (Scheme 9.2) (3). Treatment of bromo compound 3 with NaNs in aqueous tetrahydrofuran (THF) produced the triazoline 4 via an intramolecular 1,3-dipolar cycloaddition of an intermediate azide. Treatment of the triazoline 4 with p-toluenesulfonic acid (p-TSA) effected 1,3-dipolar cycloreversion of 4 to give pyrroloindole 5 in 82% yield along with diethyl diazomalonate. [Pg.624]

Keshava et al. (10) reported a facile synthesis of the fused tricyclic (3-lactams 44 and 45 via an intramolecular 1,3-dipolar cycloaddition of an azide with an alkene (Scheme 9.10). 1,3-Dipolar cycloaddition of the azides 43 in benzene at reflux gave a mixture of cis and trans tricyclic (3-lactams 44 and 45. As the ring size increased... [Pg.628]

Ogawa et al. (12) used an intramolecular azide-alkene cycloaddition strategy to synthesize the oxygen-bridged aza[15]annulene 52 and the aza[15]annulene dicar-boxylate 55 (Scheme 9.12). 1,3-Dipolar cycloaddition of vinyl azide to the acrylate moiety followed by extrusion of nitrogen gave the aziridine 51. Rearrangement of 51 afforded the aza[15]annulene 52. The same approach was used to synthesize the aza[15]annulene 55. [Pg.630]

Conformational constraints induced by various ortho-substitutents in 1-aUyloxy-2-azidomethylbenzenes (97) were used to accelerate intramolecular cycloadditions of the azide group to alkenes (21) (Scheme 9.21). For the unsubstituted azide 96, high temperature was required for the cycloaddition and the yield of the cycloadduct 100 was low. The monosubstituted azide 97 underwent cycloaddition in refluxing benzene in 10 h to give the cycloadduct 101 in good yield. Disubstituted azides 98 and 99 underwent 1,3-dipolar cycloaddition in 5-7 h to give the triazolines 102 and 103. [Pg.634]

Vogel and Delavier (26) reported a synthesis of the 6-azabicyclo[3.2.2]nonane skeleton 130 using an intramolecular azide-alkene cycloaddition strategy (Scheme 9.26). When refluxed in xylene, the azide 126 underwent an intramolecular 1,3-dipolar cycloaddition with the internal alkene. Nitrogen extrusion and subsequent rearrangement led to a mixmre of compounds 128, 129, and 130. Reactions of azides with the double bond of dienes were also used in various total syntheses of alkaloids, and will be discussed later in Section 9.2.2. [Pg.637]

Garanti et al. (30a) reported a synthesis of the l,2,3-triazolo[l,5-a][4.1]benzox-azepine 149 via an intramolecular cycloaddition of an aryl azide with an acetylene (Scheme 9.30). By using a similar strategy, the l,2,3-triazolo[l,5-a][l,4-l ]benzo-diazepine 150, an analogue of Flumazenil, was also reported (30b,c). As an extension of this method, the l,2,3-triazolo[l,5-a][l,4]benzodiazepine-6-one 153 was synthesized using an intramolecular 1,3-dipolar cycloaddition of an azide with a cyano group (30d). [Pg.640]

Sha et al. (45) reported an intramolecular cycloaddition of an alkyl azide with an enone in an approach to a cephalotaxine analogue (Scheme 9.45). Treatment of the bromide 205 with NaN3 in refluxing methanol enabled the isolation of compounds 213 and 214 in 24 and 63% yields, respectively. The azide intermediate 206 underwent 1,3-dipolar cycloaddition to produce the unstable triazoline 207. On thermolysis of 207 coupled with rearrangement and extrusion of nitrogen, compounds 213 and 214 were formed. The lactam 214 was subsequently converted to the tert-butoxycarbonyl (t-Boc)-protected sprrocyclic amine 215. The exocyclic double bond in compound 215 was cleaved by ozonolysis to give the spirocyclic ketone 216, which was used for the synthesis of the cephalotaxine analogue 217. [Pg.649]

Pearson and Schkeryantz (56) developed a novel approach for synthesis of (i)-lycorane (280) using an intramolecular cycloaddition of an azide with an co-chloro alkene (Scheme 9.56). The bromide 276 was smoothly converted into the required chloro azide 277 in several steps. 1,3-Dipolar cycloaddition of the azide 277 in benzene at 140 °C followed by extrusion of nitrogen gave the unstable... [Pg.658]

Two enantioselective syntheses of (+)-biotin (293) from L-cysteine were reported based upon the intramolecular 1,3-dipolar cycloadditions of carbamoyl azides 289 and 291 by Deroose and De Clercq (58) (Scheme 9.58). Thermolysis of the carbamoyl azides 289 and 291 gave the triazolines 290 and 292, respectively. Both 290 and 292 were converted into (+)-biotin (293) in several steps. [Pg.660]

Molander and Hiersemann (60) reported the preparation of the spirocyclic keto aziridine intermediate 302 in an approach to the total synthesis of (zb)-cephalotax-ine (304) via an intramolecular 1,3-dipolar cycloaddition of an azide with an electron-deficient alkene (Scheme 9.60). The required azide 301 was prepared by coupling the vinyl iodide 299 and the aryl zinc chloride 300 using a Pd(0) catalyst in the presence of fni-2-furylphosphine. Intramolecular 1,3-dipolar cycloaddition of the azido enone 301 in boiling xylene afforded the desired keto aziridine 302 in 76% yield. Hydroxylation of 302 according to Davis s procedure followed by oxidation with Dess-Martin periodinane delivered the compound 303, which was converted to the target molecule (i)-cephalotaxine (304). [Pg.662]

Ciufolini et al. (61) reported a facile assembly of the benzazocenone 307 as a part of the total synthesis of the antitumor alkaloids mitomycin C (309) and FR 900482 (310) based on intramolecular 1,3-dipolar cycloadditions of aryl azides with electron-rich alkenes (Scheme 9.61). Azide 305 was heated in refluxing toluene with a catalytic amount of K2CO3 to give the triazoline 306 in 55% yield. Irradiation of a solution of the triazoline 306 in wet THF with a sun lamp gave an 84% yield of the required benzazocene 308, which was converted to the target molecules 309 and 310. [Pg.663]

Hudlicky et al. (65) reported a formal stereoselective total synthesis of the oxygenated pyrrolizidine alkaloids platynecine (336), dihydroxyheliotridane (337), hastanecine (341), and tumeforcidine (342), involving an intramolecular azide-diene cycloadditions (Scheme 9.65). Intramolecular 1,3-dipolar cycloaddition of... [Pg.666]

Pearson et al. (68) reported a versatile approach to pyrrolizidine and indolizidine alkaloids such as 355, 247, and 362 using intramolecular cycloadditions of azides with electron-rich dienes (Scheme 9.68). Azido dienes 353, 357, and 360 that possess a electron-donating group on the diene were prepared from the respective compounds 352, 356, and 359. On heating at 100 °C, the azido diene 353 underwent smooth intramolecular 1,3-dipolar cycloaddition in a stereoselective... [Pg.667]

For intramolecular 1,3-dipolar cycloadditions, the application of nitrones and nitrile oxides is by far most common. However, in increasing frequency, cases intramolecular reactions of azomethine ylides (76,77,242-246) and azides (247-259) are being reported. The previously described intermolecular approach developed by Harwood and co-workers (76,77) has been extended to also include intramolecular reactions. The reaction of the chiral template 147 with the alkenyl aldehyde 148 led to the formation of the azomethine ylide 149, which underwent an intramolecular 1,3-dipolar cycloaddition to furnish 150 (Scheme 12.49). The reaction was found to proceed with high diastereoselectivity, as only one diaster-eomer of 150 was formed. By a reduction of 150, the proline derivative 151 was obtained. [Pg.850]


See other pages where Azides intramolecular 1,3-dipolar cycloaddition is mentioned: [Pg.257]    [Pg.258]    [Pg.1150]    [Pg.228]    [Pg.934]    [Pg.216]    [Pg.651]    [Pg.659]    [Pg.663]    [Pg.668]    [Pg.675]    [Pg.850]    [Pg.167]    [Pg.836]   
See also in sourсe #XX -- [ Pg.465 ]




SEARCH



1,3-cycloaddition intramolecular

1.3- Dipolar cycloadditions intramolecular cycloaddition

1.3- dipolar cycloadditions intramolecular

Azides 1,3-dipolar cycloadditions

Azides cycloaddition

Azides cycloadditions

Azides intramolecular cycloadditions

Dipolar intramolecular

Intramolecular dipolar cycloaddition

© 2024 chempedia.info