Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Axial Dispersion Reactor Model

Equivalent results are obtained if the system of equations is solved with the E-Z Solve software (fde ex20-3.msp). [Pg.499]

In this section, we apply the axial dispersion flow model (or DPF model) of Section 19.4.2 to design or assess the performance of a reactor with nonideal flow. We consider, for example, the effect of axial dispersion on the concentration profile of a species, or its fractional conversion at the reactor outlet. For simplicity, we assume steady-state, isothermal operation for a simple system of constant density reacting according to A - products. [Pg.499]

In partial nondimensional form, with z = xlL and PeL = uLIDl, equation 20.2-2 becomes [Pg.499]

In general, equation 20.2-3 must be solved numerically for nonlinear kinetics. However, an analytical solution is available for first-order kinetics and a closed vessel. [Pg.499]

For first-order kinetics, (—rA) = kAcA, and equation 20.2-3 becomes [Pg.499]


Develop a computational procedure for the solution of the nonisothermal, onedimensional axial dispersion reactor model. [Pg.434]

Table 4.3 Correlations of different model parameters, determined under steady-state-operation conditions for the used extended axial dispersion reactor model. Table 4.3 Correlations of different model parameters, determined under steady-state-operation conditions for the used extended axial dispersion reactor model.
Axial Dispersion. Rigorous models for residence time distributions require use of the convective diffusion equation. Equation (14.19). Such solutions, either analytical or numerical, are rather difficult. Example 15.4 solved the simplest possible version of the convective diffusion equation to determine the residence time distribution of a piston flow reactor. The derivation of W t) for parabolic flow was actually equivalent to solving... [Pg.558]

This example models the dynamic behaviour of an non-ideal isothermal tubular reactor in order to predict the variation of concentration, with respect to both axial distance along the reactor and flow time. Non-ideal flow in the reactor is represented by the axial dispersion flow model. The analysis is based on a simple, isothermal first-order reaction. [Pg.410]

Therefore, an attempt was made to determine the kinetic reaction scheme and effective heat transfer as well as kinetic parameters from a limited number of experimental results in a single-tube reactor of industrial dimensions with side-stream analysis. The data evaluation was performed with a pseudohomo-geneous two-dimensional continuum model without axial dispersion. The model was tested for its suitability for prediction. [Pg.3]

When a fluid passes through a packed column, the flow is divided due to the packing. Modelling of these phenomena is carried out by superimposing a dispersion, characterized by a coefficient D on the convective plug flow of velocity U. This is the model for an axial dispersion reactor. This model allows characterisation of a flow with intermediate properties between those of the plug flow reactor and those of a continuous stirred reactor. [Pg.679]

One of the most important cases is when there are two (or more) distinct regions within the reactor. This might be a packed bed of porous solids, two fluid phases, partially stagnant regions, or other complicated flows through a vessel that can basically be described by an axial dispersion type model. Transport balances can be made for each phase, per unit reactor volume ... [Pg.627]

Two-dimensional nonisothermal reactor with radial gradients and no axial dispersion (basic model)... [Pg.362]

Atwood et al, (1989) developed a reactor model that included axial and radial mass and heat dispersions to compare the performance of laboratory... [Pg.8]

Glaser and Litt (G4) have proposed, in an extension of the above study, a model for gas-liquid flow through a b d of porous particles. The bed is assumed to consist of two basic structures which influence the fluid flow patterns (1) Void channels external to the packing, with which are associated dead-ended pockets that can hold stagnant pools of liquid and (2) pore channels and pockets, i.e., continuous and dead-ended pockets in the interior of the particles. On this basis, a theoretical model of liquid-phase dispersion in mixed-phase flow is developed. The model uses three bed parameters for the description of axial dispersion (1) Dispersion due to the mixing of streams from various channels of different residence times (2) dispersion from axial diffusion in the void channels and (3) dispersion from diffusion into the pores. The model is not applicable to turbulent flow nor to such low flow rates that molecular diffusion is comparable to Taylor diffusion. The latter region is unlikely to be of practical interest. The model predicts that the reciprocal Peclet number should be directly proportional to nominal liquid velocity, a prediction that has been confirmed by a few determinations of residence-time distribution for a wax desulfurization pilot reactor of 1-in. diameter packed with 10-14 mesh particles. [Pg.99]

This section has based scaleups on pressure drops and temperature driving forces. Any consideration of mixing, and particularly the closeness of approach to piston flow, has been ignored. Scaleup factors for the extent of mixing in a tubular reactor are discussed in Chapters 8 and 9. If the flow is turbulent and if the Reynolds number increases upon scaleup (as is normal), and if the length-to-diameter ratio does not decrease upon scaleup, then the reactor will approach piston flow more closely upon scaleup. Substantiation for this statement can be found by applying the axial dispersion model discussed in Section 9.3. All the scaleups discussed in Examples 5.10-5.13 should be reasonable from a mixing viewpoint since the scaled-up reactors will approach piston flow more closely. [Pg.183]

The boundary conditions normally associated with Equation (9.14) are known as the Danckwerts or closed boundary conditions. They are obtained from mass balances across the inlet and outlet of the reactor. We suppose that the piping to and from the reactor is small and has a high Re. Thus, if we were to apply the axial dispersion model to the inlet and outlet streams, we would find = 0, which is the definition of a closed system. See... [Pg.331]

These boundary conditions are really quite marvelous. Equation (9.16) predicts a discontinuity in concentration at the inlet to the reactor so that ain a Q+) if D >0. This may seem counterintuitive until the behavior of a CSTR is recalled. At the inlet to a CSTR, the concentration goes immediately from to The axial dispersion model behaves as a CSTR in the limit as T) — 00. It behaves as a piston flow reactor, which has no inlet discontinuity, when D = 0. For intermediate values of D, an inlet discontinuity in concentrations exists but is intermediate in size. The concentration n(O-l-) results from backmixing between entering material and material downstream in the reactor. For a reactant, a(O-l-) [Pg.332]

Chapters 8 and Section 9.1 gave preferred models for laminar flow and packed-bed reactors. The axial dispersion model can also be used for these reactors but is generally less accurate. Proper roles for the axial dispersion model are the following. [Pg.334]

Adiabatic Reactors. Like isothermal reactors, adiabatic reactors with a flat velocity profile will have no radial gradients in temperature or composition. There are axial gradients, and the axial dispersion model, including its extension to temperature in Section 9.4, can account for axial mixing. As a practical matter, it is difficult to build a small adiabatic reactor. Wall temperatures must be controlled to simulate the adiabatic temperature profile in the reactor, and guard heaters may be needed at the inlet and outlet to avoid losses by radiation. Even so, it is hkely that uncertainties in the temperature profile will mask the relatively small effects of axial dispersion. [Pg.335]

Laminar Pipeline Flows. The axial dispersion model can be used for laminar flow reactors if the reactor is so long that At/R > 0.125. With this high value for the initial radial position of a molecule becomes unimportant. [Pg.335]

The molecule diffuses across the tube and samples many streamlines, some with high velocity and some with low velocity, during its stay in the reactor. It will travel with an average velocity near u and will emerge from the long reactor with a residence time close to F. The axial dispersion model is a reasonable approximation for overall dispersion in a long, laminar flow reactor. The appropriate value for D is known from theory ... [Pg.335]

The axial dispersion model is readily extended to nonisothermal reactors. The turbulent mixing that leads to flat concentration profiles will also give flat temperature profiles. An expression for the axial dispersion of heat can be written in direct analogy to Equation (9.14) ... [Pg.336]

Example 9.6 Compare the nonisothermal axial dispersion model with piston flow for a first-order reaction in turbulent pipeline flow with Re= 10,000. Pick the reaction parameters so that the reactor is at or near a region of thermal runaway. [Pg.339]

Determine the yield of a second-order reaction in an isothermal tubular reactor governed by the axial dispersion model with Pe = 16 and kt = 2. [Pg.346]

Water at room temperature is flowing through a 1.0-in i.d. tubular reactor at Re= 1000. What is the minimum tube length needed for the axial dispersion model to provide a reasonable estimate of reactor performance What is the Peclet number at this minimum tube length Why would anyone build such a reactor ... [Pg.346]

Compare Equation (11.42) with Equation (9.1). The standard model for a two-phase, packed-bed reactor is a PDE that allows for radial dispersion. Most trickle-bed reactors have large diameters and operate adiabaticaUy so that radial gradients do not arise. They are thus governed by ODEs. If a mixing term is required, the axial dispersion model can be used for one or both of the phases. See Equations (11.33) and (11.34). [Pg.412]

A well-defined bed of particles does not exist in the fast-fluidization regime. Instead, the particles are distributed more or less uniformly throughout the reactor. The two-phase model does not apply. Typically, the cracking reactor is described with a pseudohomogeneous, axial dispersion model. The maximum contact time in such a reactor is quite limited because of the low catalyst densities and high gas velocities that prevail in a fast-fluidized or transport-line reactor. Thus, the reaction must be fast, or low conversions must be acceptable. Also, the catalyst must be quite robust to minimize particle attrition. [Pg.417]

Manufacturing economics require that many devices be fabricated simultaneously in large reactors. Uniformity of treatment from point to point is extremely important, and the possibility of concentration gradients in the gas phase must be considered. For some reactor designs, standard models such as axial dispersion may be suitable for describing mixing in the gas phase. More typically, many vapor deposition reactors have such low L/R ratios that two-dimensional dispersion must be considered. A pseudo-steady model is... [Pg.426]

Most biochemical reactors operate with dilute reactants so that they are nearly isothermal. This means that the packed-bed model of Section 9.1 is equivalent to piston flow. The axial dispersion model of Section 9.3 can be applied, but the correction to piston flow is usually small and requires a numerical solution if Michaehs-Menten kinetics are assumed. [Pg.444]

Washout experiments can be used to measure the residence time distribution in continuous-flow systems. A good step change must be made at the reactor inlet. The concentration of tracer molecules leaving the system must be accurately measured at the outlet. If the tracer has a background concentration, it is subtracted from the experimental measurements. The flow properties of the tracer molecules must be similar to those of the reactant molecules. It is usually possible to meet these requirements in practice. The major theoretical requirement is that the inlet and outlet streams have unidirectional flows so that molecules that once enter the system stay in until they exit, never to return. Systems with unidirectional inlet and outlet streams are closed in the sense of the axial dispersion model i.e., Di = D ut = 0- See Sections 9.3.1 and 15.2.2. Most systems of chemical engineering importance are closed to a reasonable approximation. [Pg.541]

Example 15.10 Use residence time theory to predict the fraction unreacted for a closed reactor governed by the axial dispersion model. [Pg.562]


See other pages where Axial Dispersion Reactor Model is mentioned: [Pg.499]    [Pg.499]    [Pg.499]    [Pg.499]    [Pg.249]    [Pg.745]    [Pg.290]    [Pg.320]    [Pg.333]    [Pg.334]    [Pg.335]    [Pg.336]    [Pg.416]   
See also in sourсe #XX -- [ Pg.499 , Pg.509 ]




SEARCH



Adiabatic reactor, axial dispersion model (

Axial dispersion

Axial dispersion model

Axial model

Boundary conditions, axial dispersion model reactors)

Dispersion model

Dispersion modeling

Dispersion reactor

Reactor axial dispersion

© 2024 chempedia.info