Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Auxiliaries, chiral condensation

Enantioselective aldoi condensation by means of a chiral auxiliary and boron enolates... [Pg.113]

Scheme 5 details the asymmetric synthesis of dimethylhydrazone 14. The synthesis of this fragment commences with an Evans asymmetric aldol condensation between the boron enolate derived from 21 and trans-2-pentenal (20). Syn aldol adduct 29 is obtained in diastereomerically pure form through a process which defines both the relative and absolute stereochemistry of the newly generated stereogenic centers at carbons 29 and 30 (92 % yield). After reductive removal of the chiral auxiliary, selective silylation of the primary alcohol furnishes 30 in 71 % overall yield. The method employed to achieve the reduction of the C-28 carbonyl is interesting and worthy of comment. The reaction between tri-n-butylbor-... [Pg.492]

Another chiral auxiliary used in diastereoselective addition reactions is the 1,3-oxazine derivative 4a which shows a close structural resemblance to the 1,3-oxathiane 16 (vide supra). However, in contrast to the oxathiane, 4a cannot be readily acylatcd in the 2-position. Therefore, the benzoyl derivative 4b was prepared by condensing amino alcohol 3 with phenylglyoxal. [Pg.114]

The syntheses in Schemes 13.45 and 13.46 illustrate the use of oxazolidinone chiral auxiliaries in enantioselective synthesis. Step A in Scheme 13.45 established the configuration at the carbon that becomes C(4) in the product. This is an enolate alkylation in which the steric effect of the oxazolidinone chiral auxiliary directs the approach of the alkylating group. Step C also used the oxazolidinone structure. In this case, the enol borinate is formed and condensed with an aldehyde intermediate. This stereoselective aldol addition established the configuration at C(2) and C(3). The configuration at the final stereocenter at C(6) was established by the hydroboration in Step D. The selectivity for the desired stereoisomer was 85 15. Stereoselectivity in the same sense has been observed for a number of other 2-methylalkenes in which the remainder of the alkene constitutes a relatively bulky group.28 A TS such as 45-A can rationalize this result. [Pg.1205]

Synthesis of acid 129 starts from the commercially available 6-heptenoic acid (122), which upon reaction with (4S)-benzyloxazolidin-2-one (123) as the chiral auxiliary group yields the intermediate 124, hydroxymethylation of which affords compound 125. Hydrolysis of compound 125 followed by condensation with O-benzylhydroxylamine gives rise to the hydroxamate (126), which is then converted into (Claclam 127 via an intramolecular Mitsunobu reaction. Hydrolysis of the (Claclam 127 affords acid 128, which is subsequently formylated at the benzyloxyamine moiety to give the required intermediate acid (129) in quantitative yield, as depicted in Scheme 26. [Pg.202]

Imide Systems. Imide compounds 22 and 23, or Evans reagents, derived from the corresponding oxazolidines are chiral auxiliaries for effective asymmetric alkylation or aldol condensation and have been widely used in the synthesis of a variety of substances. [Pg.85]

In 1964, Mitsui et al.5 used a chiral auxiliary to achieve asymmetric aldol condensation, although the stereoselectivity was not high (58%) at that time. Significant improvement came in the early 1980s when Evans et al.6 and Masa-mune et al.7 introduced a series of chiral auxiliaries that led to high stereo-... [Pg.138]

As with the above pyrrolidine, proline-type chiral auxiliaries also show different behaviors toward zirconium or lithium enolate mediated aldol reactions. Evans found that lithium enolates derived from prolinol amides exhibit excellent diastereofacial selectivities in alkylation reactions (see Section 2.2.32), while the lithium enolates of proline amides are unsuccessful in aldol condensations. Effective chiral reagents were zirconium enolates, which can be obtained from the corresponding lithium enolates via metal exchange with Cp2ZrCl2. For example, excellent levels of asymmetric induction in the aldol process with synj anti selectivity of 96-98% and diastereofacial selectivity of 50-200 116a can be achieved in the Zr-enolate-mediated aldol reaction (see Scheme 3-10). [Pg.144]

Dipolar addition is closely related to the Diels-Alder reaction, but allows the formation of five-membered adducts, including cyclopentane derivatives. Like Diels-Alder reactions, 1,3-dipolar cycloaddition involves [4+2] concerted reaction of a 1,3-dipolar species (the An component and a dipolar In component). Very often, condensation of chiral acrylates with nitrile oxides or nitrones gives only modest diastereoselectivity.82 1,3-Dipolar cycloaddition between nitrones and alkenes is most useful and convenient for the preparation of iso-xazolidine derivatives, which can then be readily converted to 1,3-amino alcohol equivalents under mild conditions.83 The low selectivity of the 1,3-dipolar reaction can be overcome to some extent by introducing a chiral auxiliary to the substrate. As shown in Scheme 5-51, the reaction of 169 with acryloyl chloride connects the chiral sultam to the acrylic acid substrate, and subsequent cycloaddition yields product 170 with a diastereoselectivity of 90 10.84... [Pg.308]

Early work on the asymmetric Darzens reaction involved the condensation of aromatic aldehydes with phenacyl halides in the presence of a catalytic amount of bovine serum albumin. The reaction gave the corresponding epoxyketone with up to 62% ee.67 Ohkata et al.68 reported the asymmetric Darzens reaction of symmetric and dissymmetric ketones with (-)-8-phenylmenthyl a-chloroacetate as examples of a reagent-controlled asymmetric reaction (Scheme 8-29). When this (-)-8-phenyl menthol derivative was employed as a chiral auxiliary, Darzens reactions of acetone, pentan-3-one, cyclopentanone, cyclohexanone, or benzophenone with 86 in the presence of t-BuOK provided dia-stereomers of (2J ,3J )-glycidic ester 87 with diastereoselectivity ranging from 77% to 96%. [Pg.475]

A synthesis of novel chiral phosphine oxide aminal 113 has been developed by reacting phosphine oxide aldehyde 111 with diamine 112. The condensation gave a single diastereomer of the phosphine oxide aminal in 65% yield. This compound can be used as chiral auxiliary in asymmetric synthesis (Equation 15) <1996TA3431, 1996TL3051, 1996TL7465>. [Pg.59]

Moreover, this two-step equivalent of an aldol condensation can proceed with high enantioselectivity in the presence of a chiral auxiliary. Thus reaction of the enolate of chiral silyl ketene acetal (5) with isobutyryl chloride gives 6 in 89% yield and 94% ee after reduction of the intermediate. [Pg.196]

Among chiral auxiliaries, l,3-oxazolidine-2-thiones (OZTs) have attracted much interest for their various applications in different synthetic transformations.2 Such simple structures, directly related to far better known chiral oxazolidinones,11,12,57 have been explored in asymmetric Diels-Alder reactions and asymmetric alkylations, but mainly in condensation of their /V-acyl derivatives with aldehydes. Chiral OZTs have shown interesting characteristics in anti-selective aldol reactions58 or combined asymmetric addition. [Pg.146]

A further step towards improved selectivity in aldol condensations is found in the work of David A. Evans. The work of Evans [3a] [14] is based in some early observations from Meyers laboratory [15] and the fact that boron enolates may be readily prepared under mild conditions from ketones and dialkylboron triflates [16]. Detailed investigations with Al-propionylpyrrolidine (31) indicate that the enolisation process (LDA, THE) affords the enolate 32 with at least 97% (Z>diastereoselection (Scheme 9.8). Finally, the observation that the inclusion of potential chelating centres enhance aldol diastereoselection led Evans to study the boron enolates 34 of A(-acyl-2-oxazolidones (33), which allow not only great diastereoselectivity (favouring the 5yn-isomer) in aldol condensations, but offer a possible solution to the problem of enantioselective total syntheses (with selectivities greater than 98%) of complex organic molecules (see below, 9.3.2), by using a recyclisable chiral auxiliary. [Pg.239]

Finally, another possibility is to design enantioselective syntheses by using external chiral auxiliaries either in catalytic or in stoichiometric quantities [21], Since these strategies are nowadays of great interest in organic synthesis, we will consider here some of the most recent results achieved in enantioselective aldol condensations, as well as in the asymmetric epoxidation and hydroxylation of olefmic double bonds. [Pg.246]

If stoichiometric quantities of the chiral auxiliary are used (i.e., if the chiral auxiliary is covalently bonded to the molecule bearing the prochiral centres) there are in principle three possible ways of achieving stereoselection in an aldol adduct i) condensation of a chiral aldehyde with an achiral enolate ii) condensation of an achiral aldehyde with a chiral enolate, and iii) condensation of two chiral components. Whereas Evans [14] adopted the second solution, Masamune studied the "double asymmetric induction" approach [22aj. In this context, the relevant work of Heathcock on "relative stereoselective induction" and the "Cram s rule problem" must be also considered [23]. The use of catalytic amounts of an external chiral auxiliary in order to create a local chiral environment, will not be considered here. [Pg.246]

The chiral A/ -propionyl-2-oxazolidones (32 and 38) are also useful chiral auxiliaries in the enantioselective a-alkylation of carbonyl compounds, and it is interesting to observe that the sense of chirality transfer in the lithium enolate alkylation is opposite to that observed in the aldol condensation with boron enolates. Thus, whereas the lithium enolate of 37 (see Scheme 9.13) reacts with benzyl bromide to give predominantly the (2/ )-isomer 43a (ratio 43a 43b = 99.2 0.8), the dibutylboron enolate reacts with benzaldehyde to give the (3R, 25) aldol 44a (ratio 44a 44b = 99.7 0.3). The resultant (2R) and (25)-3-phenylpropionic acid derivatives obtained from the hydrolysis of the corresponding oxazolidinones indicated the compounds to be optically pure substances. [Pg.249]

Darzens reaction of (-)-8-phenylmethyl a-chloroacetate (and a-bromoacetate) with various ketones (Scheme 2) yields ctT-glycidic esters (28) with high geometric and diastereofacial selectivity which can be explained in terms of both open-chain or non-chelated antiperiplanar transition state models for the initial aldol-type reaction the ketone approaches the Si-f ce of the Z-enolate such that the phenyl ring of the chiral auxiliary and the enolate portion are face-to-face. Aza-Darzens condensation reaction of iV-benzylideneaniline has also been studied. Kinetically controlled base-promoted lithiation of 3,3-diphenylpropiomesitylene results in Z enolate ratios in the range 94 6 (lithium diisopropylamide) to 50 50 (BuLi), depending on the choice of solvent and temperature. ... [Pg.356]

Enantiomeric excesses of up to 76% have been obtained for alkyllithium-aldehyde condensations using 3-aminopyrrolidine lithium amides as chiral auxiliaries. Addition of organolithiums to imines has been achieved with up to 89% ee, in the presence of C2-symmetric bis(aziridine) ligands. ... [Pg.368]

Asymmetric aldol condensation of aldehyde and chiral acyl oxazolidinone, the Evans chiral auxiliary. [Pg.218]

DIASTEREOSELECTIVE ALDOL CONDENSATION USING A CHIRAL OXA2DLIOINONE AUXILIARY (2S, 3S )-3-HYDR0XY-3-PHENYL-2-METHYLPR0PAN0IC ACID... [Pg.170]

The preceding reactions illustrate control of stereochemistry by aldehyde substituents. Substantial effort has also been devoted to use of chiral auxiliaries and chiral catalysts to effect enantioselective aldol reactions.71 72 Avery useful approach for enantioselective aldol condensations has been based on the oxazolidinones 1-3, which are readily available in enantiomerically pure form. [Pg.85]

In step D, a chiral auxiliary, also derived from cysteine, is used to achieve double stereodifferentiation in an aldol condensation. A tin enolate was used. The stereoselectivity of this reaction parallels that of aldol condensations carried out with lithium or zinc enolates. Once the configuration of all the centers has been established, the synthesis proceeds to P-D-lactone by functional group modifications. [Pg.873]


See other pages where Auxiliaries, chiral condensation is mentioned: [Pg.208]    [Pg.208]    [Pg.169]    [Pg.431]    [Pg.490]    [Pg.499]    [Pg.15]    [Pg.792]    [Pg.843]    [Pg.53]    [Pg.120]    [Pg.1256]    [Pg.48]    [Pg.40]    [Pg.68]    [Pg.69]    [Pg.341]    [Pg.88]    [Pg.92]    [Pg.429]    [Pg.293]    [Pg.568]    [Pg.520]    [Pg.773]   
See also in sourсe #XX -- [ Pg.782 ]




SEARCH



Chirality auxiliaries

© 2024 chempedia.info