Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical equations atoms

A basic assumption in such additivity schemes is that the interactions between the atoms of a molecule are of a rather short-range nature. This fact can be expressed in a more precise manner The law of additivity can be expressed in a chemical equation [1]. Let us consider the atoms (or groups) X and Y attached to a common skeleton, S, and also the redistribution of these atoms on that skeleton as ejqjressed by Eq. (1). [Pg.320]

The essential information implied by the chemical equation is the stoichiometry at the macroscopic level, ie, if a moles of M react, then b moles of B do also p moles of P are formed, etc. No inference should be made about behavior at the microscopic or atomic level, ie, there is no implication thatp molecules of P appear simultaneously. There may or may not be intermediates that appear and disappear in the course of the reaction. [Pg.507]

Mechanisms. Mechanism is a technical term, referring to a detailed, microscopic description of a chemical transformation. Although it falls far short of a complete dynamical description of a reaction at the atomic level, a mechanism has been the most information available. In particular, a mechanism for a reaction is sufficient to predict the macroscopic rate law of the reaction. This deductive process is vaUd only in one direction, ie, an unlimited number of mechanisms are consistent with any measured rate law. A successful kinetic study, therefore, postulates a mechanism, derives the rate law, and demonstrates that the rate law is sufficient to explain experimental data over some range of conditions. New data may be discovered later that prove inconsistent with the assumed rate law and require that a new mechanism be postulated. Mechanisms state, in particular, what molecules actually react in an elementary step and what products these produce. An overall chemical equation may involve a variety of intermediates, and the mechanism specifies those intermediates. For the overall equation... [Pg.514]

In liquid metal solutions Z is normally of the order of 10, and so this equation gives values of Ks(a+B) which are close to that predicted by the random solution equation. But if it is assumed that the solute atom, for example oxygen, has a significantly lower co-ordination number of metallic atoms than is found in the bulk of die alloy, dieii Z in the ratio of the activity coefficients of die solutes in the quasi-chemical equation above must be correspondingly decreased to the appropriate value. For example, Jacobs and Alcock (1972) showed that much of the experimental data for oxygen solutions in biiiaty liquid metal alloys could be accounted for by the assumption that die oxygen atom is four co-ordinated in diese solutions. [Pg.355]

Ab initio ECPs are derived from atomic all-electron calculations, and they are then used in valence-only molecular calculations where the atomic cores are chemically inactive. We start with the atomic HF equation for valence orbital Xi whose angular momentum quantum number is 1 ... [Pg.172]

Chemical reactions are represented by chemical equations, which identify reactants and products. Formulas of reactants appear on the left side of the equation those of products are written on the right In a balanced chemical equation, there are the same number of atoms of a given element on both sides. The same situation holds for a chemical reaction that you carry out in the laboratory atoms are conserved. For that reason, any calculation involving a reaction must be based on the balanced equation for that reaction. [Pg.60]

The reactions that we discuss in this chapter will be represented by nuclear equations. An equation of this type uses nuclear symbols such as those written above in other respects it resembles an ordinary chemical equation. A nuclear equation must be balanced with respect to nuclear charge (atomic number) and nuclear mass (mass number). To see what that means, consider an equation that we will have a lot more to say about later in this chapter ... [Pg.513]

Charles s and Gay-Lussac s law Relation stating that at constant P and n, the volume of a gas is directly proportional to its absolute temperature, 106-107, 111 Chelating agent Complexing ligand that forms more than one bond with a central metal atom the complex formed is called a chelate, 411-412 natural, 424-425 synthetic, 424-425 Chemical equation Expression that describes the nature and relative amounts of reactants and products in a reaction, 60-61. See also Equation, net ionic. [Pg.684]

Equation (6) is a chemical equation—since atoms are conserved, it is said to be balanced. [Pg.42]

Equation (7) is also a chemical equation—again atoms are conserved. It is just as correct an expression for the burning of magnesium as is (6). To show this, we can multiply (7) by 2 to obtain equation (6). We can always multiply all the coefficients by a common factor or divide by a common factor and obtain equally valid equations. [Pg.42]

Because atoms are neither created nor destroyed, chemists regard each elemental symbol as representing one atom of the element (with the subscripts giving the number of each type of atom in a formula) and then multiply formulas by factors to show the same numbers of atoms of each element on both sides of the arrow. The resulting expression is said to be balanced and is called a chemical equation. For example, there are two H atoms on the left of the preceding skeletal equation but three H atoms on the right. So, we rewrite the expression as... [Pg.86]

Now there are four H atoms, two Na atoms, and two O atoms on each side, and the equation conforms to the law of conservation of mass. The number multiplying an entire chemical formula in a chemical equation (for example, the 2 multiplying H20) is called the stoichiometric coefficient of the substance. A coefficient of 1 (as for H2) is not written explicitly. [Pg.86]

A chemical equation expresses a chemical reaction in terms of chemical formulas the stoichiometric coefficients are chosen to show that atoms are neither created nor destroyed in the reaction. [Pg.88]

Because electrons can be neither lost nor created in a chemical reaction, all the electrons lost by the species being oxidized must be transferred to the species being reduced. Because electrons are charged, the total charge of the reactants must be the same as the total charge of the products. Therefore, when balancing the chemical equation for a redox reaction, we have to balance the charges as well as the atoms. [Pg.106]

The free O atom in the second mechanism is a reaction intermediate, a species that plays a role in a reaction but does not appear in the chemical equation for the overall reaction it is produced in one step but is used up in a later step. The two equations for the elementary reactions add together to give the equation for the overall reaction. [Pg.668]

A note on good practice The chemical equations for elementary reaction steps are written without the state symbols. They differ from the overall chemical equation, which summarizes bulk behavior, because they show how individual atoms and molecules take part in the reaction,. We do not use stoichiometric coefficients for elementary reactions. Instead, to emphasize that we are depicting individual molecules, we write the formula as many times as required. [Pg.668]

Write a balanced chemical equation for (a) the hydrogenation of ethyne (acetylene, C2H2) to ethene (C2H4) by hydrogen (give the oxidation number of the carbon atoms in the reactant and product) (b) the shift reaction (sometimes called the water gas shift reaction, WGSR) (c) the reaction of barium hydride with water. [Pg.738]

H atom is attached to an N atom at the end of the chain), (hi If HN, is added to NH, a proton transfer reaction occurs. Wo the chemical equation for that reaction. [Pg.771]

In a balanced chemical equation (commonly called a chemical equation ), the same number of atoms of each element appears on both sides of the equation, chemical equilibrium A dynamic equilibrium between reactants and products in a chemical reaction, chemical formula A collection of chemical symbols and subscripts that shows the composition of a substance. See also condensed structural formula empirical formula,- molecular formula structural formula. [Pg.944]

Stem-Gerlach experiment The demonstration of the quantization of electron spin by passing a beam of atoms through a magnetic field, stick structure See line structure. stock solution A solution stored in concentrated form, stoichiometric coefficients The numbers multiplying chemical formulas in a chemical equation. [Pg.968]

Given this context, the use of chemical symbols, formulae and equations can be readily misinterpreted in the classroom, because often the same representations can stand for both the macroscopic and sub-microscopic levels. So H could stand for an atom, or the element hydrogen in an abstract sense H2 could mean a molecule or the substance. One common convention is that a chemical equation represents molar quantities, so in Example 9 in Table 4.1,... [Pg.100]

Using models in learning about ehemieal equations has proved a successful tool, espeeially by students with diffieulties in eoneept understanding. By eounting the number of atoms in partiele representations they better understood the meaning of a balanced equation. Some students still have problems with balaneing chemical equations when models are not avail-... [Pg.324]

The stoichiometric coefficients in a balanced chemical equation must be chosen so that the atoms of each element are conserved. Many chemical equations can be balanced by inspection. Balancing by inspection means changing stoichiometric coefficients until the number of atoms of each element is the same on each side of the arrow. Usually, we can tell what changes need to be made by looking closely at the reaction and matching the numbers of atoms of each element on both sides of the equation. Consider the following example. [Pg.202]

It is easiest to balance a chemical equation one element at a time, starting with the elements that appear in only one substance on each side. Notice that all of the carbon atoms in propane end up in carbon dioxide molecules, and all of propane s hydrogen atoms appear in water molecules. This feature allows us to balance carbon and hydrogen easily. [Pg.203]

Sections 2- and 3- describe how to use the relationships among atoms, moles, and masses to answer how much questions about individual substances. Combining these ideas with the concept of a balanced chemical equation lets us answer how much questions about chemical reactions. The study of the amounts of materials consumed and produced in chemical reactions is called stoichiometry. [Pg.206]

Both proposed mechanisms for NO2 decomposition contain chemical species produced in the first step and consumed in the second step. This is the defining characteristic of an intermediate. An intermediate is a chemical species produced In an early step of a mechanism and consumed in a later step. Intermediates never appear in the overall chemical equation. Notice that neither the O atoms of Mechanism I nor the NO3 molecules of Mechanism II appear In the balanced chemical equation for NO2 decomposition. [Pg.1052]

It is understood that the ortho and meta products form part of the waste produced. In determining AE, the balanced chemical equation is written with a generalized structure for the product indicating all possible isomers and since the molecular weights of all isomers are identical equation (4.2) is used without change. In the above example, the atom economy for the production of para, meta or ortho products is the same. [Pg.83]


See other pages where Chemical equations atoms is mentioned: [Pg.213]    [Pg.85]    [Pg.101]    [Pg.562]    [Pg.941]    [Pg.944]    [Pg.947]    [Pg.126]    [Pg.153]    [Pg.153]    [Pg.170]    [Pg.179]    [Pg.311]    [Pg.13]    [Pg.201]    [Pg.1353]    [Pg.23]    [Pg.70]    [Pg.74]    [Pg.89]    [Pg.91]    [Pg.96]   
See also in sourсe #XX -- [ Pg.112 , Pg.235 ]




SEARCH



Atoms equations

Balanced chemical equation atoms

Chemical atom

Chemicals equations

© 2024 chempedia.info