Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric reactions nucleophilic substitution

In recent years there has been a proliferation of new reactions and reagents that have been so useful in organic synthesis that often people refer to them by name. Many of these are stereoselective or regioselecth/e methods. While the expert may know exactly what the Makosza vicarious nucleophilic substitution, or the Meyers asymmetric synthesis refers to, many students as well as researchers would appreciate guidance regarding such "Name Reactions". [Pg.459]

Keywords N,N-Containing ligands Asymmetric catalysis Cyclopropanation Diels-Alder reaction Nucleophilic allylic substitution... [Pg.94]

Sulfoximines bearing a chiral sulfur atom have recently emerged as valuable ligands for metal-catalysed asymmetric synthesis.In particular, C2-symmetric bis(sulfoximines), such as those depicted in Scheme 1.51, were applied to the test reaction, achieving enantioselectivities of up to 93% ee. The most selective ligand (R = c-Pent, R = Ph) of the series was also applied to the nucleophilic substitution reaction of l,3-diphenyl-2-propenyl acetate with substituted malonates, such as acetamido-derived diethylmalonate, which provided the corresponding product in 89% yield and 98% ee. [Pg.42]

Additions to quinoline derivatives also continued to be reported last year. Chiral dihydroquinoline-2-nitriles 55 were prepared in up to 91% ee via a catalytic, asymmetric Reissert-type reaction promoted by a Lewis acid-Lewis base bifunctional catalyst. The dihydroquinoline-2-nitrile derivatives can be converted to tetrahydroquinoline-2-carboxylates without any loss of enantiomeric purity <00JA6327>. In addition the cyanomethyl group was introduced selectively at the C2-position of quinoline derivatives by reaction of trimethylsilylacetonitrile with quinolinium methiodides in the presence of CsF <00JOC907>. The reaction of quinolylmethyl and l-(quinolyl)ethylacetates with dimethylmalonate anion in the presence of Pd(0) was reported. Products of nucleophilic substitution and elimination and reduction products were obtained . Pyridoquinolines were prepared in one step from quinolines and 6-substituted quinolines under Friedel-Crafts conditions <00JCS(P1)2898>. [Pg.246]

In this chapter, we study the variation in the FF during asymmetric stretching and bending in ammonia, internal rotation in H202, and along the intrinsic reaction coordinate (IRC) of three prototypical examples of chemical reactions, viz., (1) a thermoneutral reaction, such as a symmetrical gas-phase SN2 type nucleophilic substitution ... [Pg.324]

Many theories have been put forward to explain the mechanism of inversion. According to the accepted Hugles, Ingold theory aliphatic nucleophilic substitution reactions occur eigher by SN2 or SN1 mechanism. In the SN2 mechanism the backside attack reduces electrostatic repulsion in the transition state to a minimum when the leaving meleophile leaves the asymmetric carbon, naturally an inversion of configuration occurs at the central carbon atom. [Pg.156]

Schulz E (2005) Use of JV,JV-Coordinaling Ligands in Catalytic Asymmetric C-C Bond Formations Example of Cyclopropanation, Diels-Alder Reaction, Nucleophilic Allylic Substitution. 15 93-148... [Pg.284]

However, the major factor stimulating the rapid development of static and dynamic sulfur stereochemistry was the interest in the mechanism and steric course of nucleophilic substitution reactions at chiral sulfur. Very recently, chiral organic sulfur compounds have attracted much attention as useful and efficient reagents in asymmetric synthesis. [Pg.334]

Organosulfur chemistry is presently a particularly dynamic subject area. The stereochemical aspects of this field are surveyed by M. Mikojajczyk and J. Drabowicz. in the fifth chapter, entitled Qural Organosulfur Compounds. The synthesis, resolution, and application of a wide range of chiral sulfur compounds are described as are the determination of absolute configuration and of enantiomeric purity of these substances. A discussion of the dynamic stereochemistry of chiral sulfur compounds including racemization processes follows. Finally, nucleophilic substitution on and reaction of such compounds with electrophiles, their use in asymmetric synthesis, and asymmetric induction in the transfer of chirality from sulfur to other centers is discussed in a chapter that should be of interest to chemists in several disciplines, in particular synthetic and natural product chemistry. [Pg.501]

Couplings can also be carried out by simple nucleophilic substitution reactions of arenechromium tricarbonyls . For example, in the synthesis of biaryl 469, asymmetric lithiation of 463 using in situ silylation provides the complex 466 via 464 and 465. Nucleophilic substitution by the tolyl Grignard 467 yields 468 as a single atropisomer in 68% yield, and decomplexation gives the biaryl 469 in 92% yield (Scheme 184). [Pg.594]

Trost and his co-workers succeeded in the allylic alkylation of prochiral carbon-centered nucleophiles in the presence of Trost s ligand 118 and obtained the corresponding allylated compounds with an excellent enantioselec-tivity. A variety of prochiral carbon-centered nucleophiles such as / -keto esters, a-substituted ketones, and 3-aryl oxindoles are available for this asymmetric reaction (Scheme jg) Il3,ll3a-ll3g Q jjg recently, highly enantioselective allylation of acyclic ketones such as acetophenone derivatives has been reported by Hou and his co-workers, Trost and and Stoltz and Behenna - (Scheme 18-1). On the other hand, Ito and Kuwano... [Pg.96]

The formation of chromane derivatives has also been realised in the palladium catalyzed intramolecular nucleophilic substitution of allyl carbonates (Tsuji-Trost reaction). In most cases the reaction is accompanied by the formation of a new centre of chirality. Using Trost s chiral ligand the ring closure was carried out in an enantioselective manner. The asymmetric allylation of the phenol derivative shown in 4.20. was achieved both in good yield and with excellent selectivity.23... [Pg.75]

Some organic reactions can be accomplished by using two-layer systems in which phase-transfer catalysts play an important role (34). The phase-transfer reaction proceeds via ion pairs, and asymmetric induction is expected to emerge when chiral quaternary ammonium salts are used. The ion-pair interaction, however, is usually not strong enough to control the absolute stereochemistry of the reaction (35). Numerous trials have resulted in low or only moderate stereoselectivity, probably because of the loose orientation of the ion-paired intermediates or transition states. These reactions include, but are not limited to, carbene addition to alkenes, reaction of sulfur ylides and aldehydes, nucleophilic substitution of secondary alkyl halides, Darzens reaction, chlorination... [Pg.370]

Enolase type activity is displayed in the efficient supramolecular catalysis of H/D exchange in malonate and pyruvate bound to macrocyclic polyamines [5.32]. Other processes that have been studied comprise for instance the catalysis of nucleophilic aromatic substitution by macrotricyclic quaternary ammonium receptors of type 21 [5.33], the asymmetric catalysis of Michael additions [5.34], the selective functionalization of doubly bound dicarboxylic acids [5.35] or the activation of reactions on substituted crown ethers by complexed metal ions [5.36]. [Pg.60]

Unlike the nucleophilic substitution reactions which generate stable onium halide after the reaction, nucleophilic additions to electrophilic C=X double bonds (X=C, N, O) provide rather basic onium anion species as an initial product. If the anion is sufficiently stable under the reaction conditions, onium anion will then exchange the counter ion for the other metal carbanion at the interface to regenerate the reactive onium carbanion Q+R. In another scenario, the basic onium anion may abstract the acidic hydrogen atom of the other substrate to provide Q 1 R directly. Such a reaction system ideally requires only a catalytic amount of the base although, in general, a substoichiometric or excess amount of the base is used to lead the reaction to completion. An additional feature of this system is the substantial possibility of a retro-process at the crucial asymmetric induction step, which might be problematic in some cases. [Pg.5]

Arasabenzene, with chromium, 5, 339 Arcyriacyanin A, via Heck couplings, 11, 320 Arduengo-type carbenes with titanium(IV), 4, 366 with vanadium, 5, 10 (Arene(chromium carbonyls analytical applications, 5, 261 benzyl cation stabilization, 5, 245 biomedical applications, 5, 260 chiral, as asymmetric catalysis ligands, 5, 241 chromatographic separation, 5, 239 cine and tele nucleophilic substitutions, 5, 236 kinetic and mechanistic studies, 5, 257 liquid crystalline behaviour, 5, 262 lithiations and electrophile reactions, 5, 236 as main polymer chain unit, 5, 251 mass spectroscopic studies, 5, 256 miscellaneous compounds, 5, 258 NMR studies, 5, 255 palladium coupling, 5, 239 polymer-bound complexes, 5, 250 spectroscopic studies, 5, 256 X-ray data analysis, 5, 257... [Pg.55]

Aromatic ketones arylations, 10, 140 asymmetric hydrogenation, 10, 50 G—H bond alkylation, 10, 214 dialkylzinc additions, 9, 114-115 Aromatic ligands mercuration, 2, 430 in mercury 7t-complexes, 2, 449 /13-77-Aromatic nitriles, preparation, 6, 265 Aromatic nucleophilic substitution reactions, arene chromium tricarbonyls, 5, 234... [Pg.57]

Aldol reactions using a quaternary chinchona alkaloid-based ammonium salt as orga-nocatalyst Several quaternary ammonium salts derived from cinchona alkaloids have proven to be excellent organocatalysts for asymmetric nucleophilic substitutions, Michael reactions and other syntheses. As described in more detail in, e.g., Chapters 3 and 4, those salts act as chiral phase-transfer catalysts. It is, therefore, not surprising that catalysts of type 31 have been also applied in the asymmetric aldol reaction [65, 66], The aldol reactions were performed with the aromatic enolate 30a and benzaldehyde in the presence of ammonium fluoride salts derived from cinchonidine and cinchonine, respectively, as a phase-transfer catalyst (10 mol%). For example, in the presence of the cinchonine-derived catalyst 31 the desired product (S)-32a was formed in 65% yield (Scheme 6.16). The enantioselectivity, however, was low (39% ee) [65],... [Pg.145]

Nucleophilic addition of sulfur ylides to C=0 double bonds is an important means of synthesis of epoxides [198], Because optically active epoxides are widely applied as versatile intermediates in the preparation of, e.g., pharmaceuticals, the asymmetric design of this sulfur ylide-based reaction has attracted much interest [199, 200, 212, 213], One aspect of this asymmetric organocatalytic process which has been realized by several groups is shown in Scheme 6.87A. In the first step a chiral sulfur ylide of type 204 is formed in a nucleophilic substitution reaction starting from a halogenated alkane, a base, and a chiral sulfide of type 203 as organocata-... [Pg.211]

Basically, two different routes are conceivable for their asymmetric construction 1) nucleophilic substitution reaction with a fluoride anion and 2) electrophilic addition of fluoronium cations to activated or masked carbanions. First attempts on enantioselective nucleophilic fluorination date back to the pioneering work of Hann and Sampson [3]. In an ambitious dehydroxylation/fluorination sequence the authors reacted a racemic a-trimethylsiloxy ester with a half molar equivalent of an enantiomerically pure proline-derived aminofluorosulphurane in hope to achieve a kinetic resolution. Unfortunately, the fluorinated product was obtained without significant enantiomeric excess. [Pg.201]


See other pages where Asymmetric reactions nucleophilic substitution is mentioned: [Pg.7]    [Pg.451]    [Pg.248]    [Pg.102]    [Pg.534]    [Pg.120]    [Pg.143]    [Pg.606]    [Pg.7]    [Pg.74]    [Pg.122]    [Pg.93]    [Pg.206]    [Pg.130]    [Pg.158]    [Pg.333]    [Pg.86]    [Pg.1050]    [Pg.190]    [Pg.226]    [Pg.113]    [Pg.153]    [Pg.186]    [Pg.249]    [Pg.249]   


SEARCH



Asymmetric reactions nucleophilic substitution, allylic derivatives

Asymmetric substitution reactions

Nucleophiles substitution reactions

Nucleophilic substitution reactions nucleophiles

Substitution reactions nucleophile

Substitution reactions nucleophilic

© 2024 chempedia.info