Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric malonate

Blanche , J. Baudoux, J. Amere, M. Lasne, M. C. Rouden, J. Asymmetric Malonic and Acetoacetic Acid Syntheses— A Century of Enantioselective Decarboxylative Protonations. Eur.. Org. Chem. 2008, 5493. [Pg.222]

Blanche J, Baudoux J, Amere M, Fasne MC, Rouden J. Asymmetric malonic and acetoacetic acid s3mtheses-A century of enantioselective decarboxylative protonations. Eur. J. Org. Chem. 2008 5493-5506. [Pg.987]

Pd-catalyzed asymmetric allylic alkylation is a typical catalytic carbon-carbon bond forming reaction [ 126 -128]. The Pd-complex of the ligand (R)-3b bearing methyl, 2-biphenyl and cyclohexyl groups as the three substituents attached to the P-chirogenic phosphorus atom was found to be in situ an efficient catalyst in the asymmetric allylic alkylation of l-acetoxy-l,3-diphenylprop-2-en (4) with malonate derivatives in the presence of AT,0-bis(trimethylsilyl)acetamide (BSA) and potassium acetate, affording enantioselectivity up to 96% and quantitative... [Pg.35]

The efficiency of a catalytic system based on the bis(aminophosphane) 53 in the asymmetric alkylation of 3-acetoxycyclohexene with dimethyl malonate has been tested [170]. Concerning the enantioselectivity of this reaction, the ee values are generally quite low and the best result for this ligand is only 31% ee. [Pg.98]

The intramolecular asymmetric Stetter reaction of aliphatic aldehydes is generally more difficult to achieve due to the presence of acidic a-protons. Rovis and co-workers have demonstrated that the NHC derived from pre-catalyst 130 promotes the intramolecular Stetter cyclisation with enoate and alkyhdene malonate Michael acceptors 133. Cyclopentanones are generally accessed in excellent yields and enantioselectivities, however cyclohexanones are obtained in significantly lower yields unless very electron-deficient Michael acceptors are employed... [Pg.277]

Scheme 1. Asymmetric allylic alkylation of rac-3-acetoxy-l,3-diphenyl-l-propene (rac-I) with dimethyl malonate catalysed by Pd/1 colloidal system. (Reprinted from Reference [44], 2004, with permission from American Chemical Society.)... Scheme 1. Asymmetric allylic alkylation of rac-3-acetoxy-l,3-diphenyl-l-propene (rac-I) with dimethyl malonate catalysed by Pd/1 colloidal system. (Reprinted from Reference [44], 2004, with permission from American Chemical Society.)...
Sulfoximines bearing a chiral sulfur atom have recently emerged as valuable ligands for metal-catalysed asymmetric synthesis.In particular, C2-symmetric bis(sulfoximines), such as those depicted in Scheme 1.51, were applied to the test reaction, achieving enantioselectivities of up to 93% ee. The most selective ligand (R = c-Pent, R = Ph) of the series was also applied to the nucleophilic substitution reaction of l,3-diphenyl-2-propenyl acetate with substituted malonates, such as acetamido-derived diethylmalonate, which provided the corresponding product in 89% yield and 98% ee. [Pg.42]

The chiral center would be installed from either Unear carbamate 15 or branched carbamate 16 via the asymmetric addition of malonate anion to the 7i-allyl Mo complex reported by Trost et al. [11] to afford the branched chiral malonate derivative 17. Decarboxylation of 17 should provide the mono-carboxylic acid 18. Masa-mune homologation with 18 affords our common precursor 14. Linear carbamate 15 was obtained from the corresponding cinnamic acid, and branched 16 was prepared in one pot from the corresponding aldehyde. [Pg.49]

A newly developed asymmetric nucleophilic addition of malonate to 7i-allyl Mo complex was the cornerstone for this preparative campaign. [Pg.61]

When we used asymmetric nucleophilic addition of malonate to the Mo tt-allyl complex in our first delivery, the Mo chemistry was not so clearly understood, and our application would be the first large scale example, to the best of our knowledge. Initially our contributions to Mo chemistry were two-fold (i) replacement of non-commercially available (EtCN)3Mo(CO)3 or (C7H8)Mo(CO)3 by more stable and inexpensive Mo(CO)6 by incorporation of proper pre-activating time (ii) simplified preparation of the chiral ligand. Even after we completed the project, we still had a strong interest in Mo chemistry. [Pg.62]

The palladium-catalyzed asymmetric allylic substitution using seven different phosphano-oxazoline ligands at various ligand-to-metal ratios was also studied.112 An aluminum block containing 27 wells was placed in a dry box in which the reactions were carried out in parallel. Analyses were performed by conventional chiral GC equipped with an autosampler. Such a setup allowed about 33 catalyst evaluations per day. Apparently, only a few dozen were carried out in the study, resulting in the identification of a catalyst showing an ee-value of 74% in the reaction of 4-acyloxy-2-pentene with malonate.112 It is not clear whether further ligand diversification would lead to catalysts more selective than the record set in this case by the Trost-catalyst (92% ee).113... [Pg.538]

A similar pathway involving a microwave-driven molybdenum-catalyzed asymmetric allylic alkylation as the key step was elaborated by Moberg and coworkers for the preparation of the muscle relaxant (R)-baclofen (Scheme 6.52) [108]. The racemic form of baclofen is used as a muscle relaxant (antispasmodic) lipophilic derivative of y-aminobutyric acid (GABA). Pharmacological studies have shown that the (R)-enantiomer is the therapeutically useful agonist of the GABAb receptor. Asymmetric alkylation of the allylic carbonate precursor with dimethyl malonate afforded... [Pg.142]

Another metal-catalyzed microwave-assisted transformation performed on a polymer support involves the asymmetric allylic malonate alkylation reaction shown in Scheme 12.4. The rapid molybdenum(0)-catalyzed process involving thermostable chiral ligands proceeded with 99% ee on a solid support. When TentaGel was used as as support, however, the yields after cleavage were low (8-34%) compared with the corresponding solution phase microwave-assisted process (monomode cavity) which generally proceeded in high yields (>85%) [30],... [Pg.409]

The a-arylation of carbonyl compounds (sometimes in enantioselective version) such as ketones,107-115 amides,114 115 lactones,116 azlactones,117 malonates,118 piperidinones,119,120 cyanoesters,121,122 nitriles,125,124 sul-fones, trimethylsilyl enolates, nitroalkanes, esters, amino acids, or acids has been reported using palladium catalysis. The asymmetric vinylation of ketone enolates has been developed with palladium complexes bearing electron-rich chiral monodentate ligands.155... [Pg.314]

Moreover, these rare earth heterobimetallic complexes can be utilized for a variety of efficient catalytic asymmetric reactions as shown in Scheme 7 Next we began with the development of an amphoteric asymmetric catalyst assembled from aluminum and an alkali metal.1171 The new asymmetric catalyst could be prepared efficiently from LiAlH4 and 2 mol equiv of (R)-BINOL, and the structure was unequivocally determined by X-ray crystallographic analysis (Scheme 8). This aluminum-lithium-BINOL complex (ALB) was highly effective in the Michael reaction of cyclohexenone 75 with dibenzyl malonate 77, giving 82 with 99% ee and 88 % yield at room temperature. Although LLB and... [Pg.113]

The mechanistic considerations of a catalytic asymmetric Michael reaction suggest that the reaction of a alkali metal enolate derived from a malon-ate derivative with an enone should lead to an intermediary aluminum enolate. Is it possible that such an A1 enolate could then be trapped by an... [Pg.114]

The first successful attempt in asymmetric synthesis was made by Marckwald in 1904 who prepared an active (-) -valeric acid by heating the half brucine salt of ethyl methyl malonic acid at 170°C. [Pg.145]

Although Helmchen et al. showed that asymmetric iridium-catalyzed allylic substitution could be achieved, the scope of the reactions catalyzed by iridium complexes of the PHOX ligands was limited. Thus, they evaluated reactions catalyzed by complexes generated from [lr(COD)Cl]2 and the dimethylamine-derived phosphoramidite monophos (Scheme 8) [45,51]. Although selectivity for the branched isomer from addition of malonate nucleophiles to allylic acetates was excellent, the highest enantiomeric excess obtained was 86%. This enantiomeric excess was obtained from a reaction of racemic branched allylic acetate. The enantiomeric excess was lower when linear allylic acetates were used. This system catalyzed addition of the hthium salts of A-benzyl sulfonamides to aUylic acetates, but the product of the reaction between this reagent and an alkyl-substituted linear aUylic acetate was formed with an enantiomeric excess of 13%. [Pg.181]

At the start of this project, we chose a-arylpropionic acids as the target molecules, because their S-isomers are well established anti-inflammatory agents. When one plans to prepare this class of compounds via an asymmetric decarboxylation reaction, taking advantage of the hydrophobic reaction site of an enzyme, the starting material should be a disubstituted malonic acid having an aryl group on its a-position. [Pg.3]

So far, it has become clear that Cys plays an essential role in the asymmetric decarboxylation of disubstituted malonic acids. It follows that studies of reaction kinetics and stereochemistry will serve to disclose the role of the specific cysteine residue and the reaction intermediate. [Pg.18]

Ir-catalyzed allylic substitutions employing allylic alcohols as substrates and diethyl malonate as pronucleophile were first reported by Takeuchi and coworkers [11]. Here, the substitution step was found to be preceded by OH activation via transesterification to a malonic ester derivative. The asymmetric alkylation of cinnamic alcohol was similarly accomplished by Helmchen and colleagues, using a PHOX ligand and the procedure described in Section 9.2.3 [19]. [Pg.232]


See other pages where Asymmetric malonate is mentioned: [Pg.331]    [Pg.50]    [Pg.14]    [Pg.16]    [Pg.75]    [Pg.92]    [Pg.155]    [Pg.234]    [Pg.282]    [Pg.332]    [Pg.142]    [Pg.346]    [Pg.88]    [Pg.173]    [Pg.174]    [Pg.169]    [Pg.473]    [Pg.416]    [Pg.133]    [Pg.137]    [Pg.254]    [Pg.275]    [Pg.285]    [Pg.324]    [Pg.384]    [Pg.386]    [Pg.158]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



1,4-Malonate addition, asymmetric

1,4-Malonate addition, asymmetric protonation

Asymmetric transformation of malonic acid derivative

Malonate, asymmetric Michael addition

© 2024 chempedia.info