Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric kinetic resolution

In principle, it should be possible to selectively reduce one of the enantiomers in a racemic sulfoxide mixture that is, an asymmetric kinetic resolution via reduction should... [Pg.78]

An interesting extension of this reaction is shown in the asymmetric kinetic resolution of cyclic allylic ether 44 under alkene coupling conditions. Use of (R)-12 as the catalyst gives (R)-45 in > 99% ee at 58% conversion. The ethylated product 46 is also formed in the reaction in 94% ee (Eq. 7) [25]. The reaction is effective for six- to eight-membered 3-oxacycloalkenes 47 as well as for a wide variety of alkoxycycloalkenes 48 [27], with some resolution dependency on the ring size of 47 (Fig. 2) [26]. [Pg.226]

MTO [methyltrioxorhenium(VII), cf. Chapter 3.3.13] can be used as a catalyst for the epoxidation of olefins with urea hydroperoxide in [EMIMJBF4 [19]. The activity is reported to be comparable with the reaction in organic solvents but side reactions are suppressed. The use of an ionic liquid as a co-solvent in CH2CI2 for the enantioselective Mn-salen complex-catalyzed epoxidation of olefins with Na(OCl) was reported to result in enhanced reaction rates at no loss of enantioselectivity [20]. Cr-salen complexes can further be used for the asymmetric kinetic resolution of epoxides by ring-opening with azide [21]. [Pg.641]

Ligand addition to the CuAAC reaction can affect kinetic resolution by using chiral precursors and ligands. The first example for asymmetric kinetic resolution of the azide-alkyne cycloaddition was given by Fokin and Finn, who tested several copper complexes of the bis(oxazolinyl)pyridine (pybox) family in combination with the racemic mixture of the compound 25 (Scheme 9.3). " Kinetic resolution could be observed up to a maximum enantiomer selectivity factor of three using ligand 18. [Pg.273]

Kinetic resolution (not as good as Sharp less asymmetric epoxldatlon)... [Pg.16]

Clearly, there is a need for techniques which provide access to enantiomerically pure compounds. There are a number of methods by which this goal can be achieved . One can start from naturally occurring enantiomerically pure compounds (the chiral pool). Alternatively, racemic mixtures can be separated via kinetic resolutions or via conversion into diastereomers which can be separated by crystallisation. Finally, enantiomerically pure compounds can be obtained through asymmetric synthesis. One possibility is the use of chiral auxiliaries derived from the chiral pool. The most elegant metliod, however, is enantioselective catalysis. In this method only a catalytic quantity of enantiomerically pure material suffices to convert achiral starting materials into, ideally, enantiomerically pure products. This approach has found application in a large number of organic... [Pg.77]

EinaHy, kinetic resolution of racemic olefins and aHenes can be achieved by hydroboration. The reaction of an olefin or aHene racemate with a deficient amount of an asymmetric hydroborating agent results in the preferential conversion of the more reactive enantiomer into the organoborane. The remaining unreacted substrate is enriched in the less reactive enantiomer. Optical purities in the range of 1—65% have been reported (471). [Pg.323]

Enzymatic hydrolysis of A/-acylamino acids by amino acylase and amino acid esters by Hpase or carboxy esterase (70) is one kind of kinetic resolution. Kinetic resolution is found in chemical synthesis such as by epoxidation of racemic allyl alcohol and asymmetric hydrogenation (71). New routes for amino acid manufacturing are anticipated. [Pg.279]

Enzyme-Catalyzed Asymmetric Synthesis. The extent of kinetic resolution of racemates is determined by differences in the reaction rates for the two enantiomers. At the end of the reaction the faster reacting enantiomer is transformed, leaving the slower reacting enantiomer unchanged. It is apparent that the maximum product yield of any kinetic resolution caimot exceed 50%. [Pg.332]

Kinetic Resolutions. From a practical standpoint the principal difference between formation of a chiral molecule by kinetic resolution of a racemate and formation by asymmetric synthesis is that in the former case the maximum theoretical yield of the chiral product is 50% based on a racemic starting material. In the latter case a maximum yield of 100% is possible. If the reactivity of two enantiomers is substantially different the reaction virtually stops at 50% conversion, and enantiomericaHy pure substrate and product may be obtained ia close to 50% yield. Convenientiy, the enantiomeric purity of the substrate and the product depends strongly on the degree of conversion so that even ia those instances where reactivity of enantiomers is not substantially different, a high purity material may be obtained by sacrificing the overall yield. [Pg.337]

The variety of enzyme-catalyzed kinetic resolutions of enantiomers reported ia recent years is enormous. Similar to asymmetric synthesis, enantioselective resolutions are carried out ia either hydrolytic or esterification—transesterification modes. Both modes have advantages and disadvantages. Hydrolytic resolutions that are carried out ia a predominantiy aqueous medium are usually faster and, as a consequence, require smaller quantities of enzymes. On the other hand, esterifications ia organic solvents are experimentally simpler procedures, aHowiag easy product isolation and reuse of the enzyme without immobilization. [Pg.337]

Both reactions were carried out under two-phase conditions with the help of an additional organic solvent (such as iPrOH). The catalyst could be reused with the same activity and enantioselectivity after decantation of the hydrogenation products. A more recent example, again by de Souza and Dupont, has been reported. They made a detailed study of the asymmetric hydrogenation of a-acetamidocin-namic acid and the kinetic resolution of methyl ( )-3-hydroxy-2-methylenebu-tanoate with chiral Rh(I) and Ru(II) complexes in [BMIM][BF4] and [BMIM][PFg] [55]. The authors described the remarkable effects of the molecular hydrogen concentration in the ionic catalyst layer on the conversion and enantioselectivity of these reactions. The solubility of hydrogen in [BMIM][BF4] was found to be almost four times higher than in [BMIM][PFg]. [Pg.231]

A noteworthy feature of the Sharpless Asymmetric Epoxidation (SAE) is that kinetic resolution of racemic mixtures of chiral secondary allylic alcohols can be achieved, because the chiral catalyst reacts much faster with one enantiomer than with the other. A mixture of resolved product and resolved starting material results which can usually be separated chromatographically. Unfortunately, for reasons that are not yet fully understood, the AD is much less effective at kinetic resolution than the SAE. [Pg.686]

Catalytic kinetic resolution can be the method of choice for the preparation of enantioenriched materials, particularly when the racemate is inexpensive and readily available and direct asymmetric routes to the optically active compounds are lacking. However, several other criteria-induding catalyst selectivity, efficiency, and cost, stoichiometric reagent cost, waste generation, volumetric throughput, ease of product isolation, scalability, and the existence of viable alternatives from the chiral pool (or classical resolution)-must be taken into consideration as well... [Pg.250]

Alternatively, epoxides can be formed with concomitant formation of a C-C bond. Reactions between aldehydes and various carbon nucleophiles are an efficient route to epoxides, although the cis. trans selectivity can be problematic (see Section 9.1.4). Kinetic resolution (see Section 9.1.5.2) or dihydroxylation with sequential ring-closure to epoxides (see Section 9.1.1.3) can be employed when asymmetric epoxidation methods are unsatisfactory. [Pg.315]

Chiral sulphoxides are the most important group of compounds among a vast number of various types of chiral organosulphur compounds. In the first period of the development of sulphur stereochemistry, optically active sulphoxides were mainly used as model compounds in stereochemical studies2 5 6. At present, chiral sulphoxides play an important role in asymmetric synthesis, especially in an asymmetric C—C bond formation257. Therefore, much effort has been devoted to elaboration of convenient methods for their synthesis. Until now, optically active sulphoxides have been obtained in the following ways optical resolution, asymmetric synthesis, kinetic resolution and stereospecific synthesis. These methods are briefly discussed below. [Pg.284]

A very interesting approach to optically active sulphoxides, based on a kinetic resolution in a Pummerer-type reaction with optically active a-phenylbutyric acid chloride 269 in the presence of /V,A -dimethyIaniline, was reported by Juge and Kagan332 (equation 149). In contrast to the asymmetric reductions discussed above, this procedure afforded the recovered sulphoxides in optical yields up to 70%. Chiral a, /1-unsaturated sulphoxides 270 were prepared via a kinetic resolution elaborated by Marchese and coworkers333. They found that elimination of HX from racemic /i-halogenosulphoxides 271 in the presence of chiral tertiary amines takes place in an asymmetric way leading to both sulphoxides 270 and 271, which are optically active (optical yields up to 20%) with opposite configurations at sulphur (equation 150). [Pg.296]

This type of asymmetric conjugate addition of allylic sulfinyl carbanions to cyclopen-tenones has been applied successfully to total synthesis of some natural products. For example, enantiomerically pure (+ )-hirsutene (29) is prepared (via 28) using as a key step conjugate addition of an allylic sulfinyl carbanion to 2-methyl-2-cyclopentenone (equation 28)65, and (+ )-pentalene (31) is prepared using as a key step kinetically controlled conjugate addition of racemic crotyl sulfinyl carbanion to enantiomerically pure cyclopentenone 30 (equation 29) this kinetic resolution of the crotyl sulfoxide is followed by several chemical transformations leading to (+ )-pentalene (31)68. [Pg.835]

Table 4.20 Asymmetric Diels-Alder reactions via enzymatic kinetic resolution... Table 4.20 Asymmetric Diels-Alder reactions via enzymatic kinetic resolution...
Hydantoinases belong to the E.C.3.5.2 group of cyclic amidases, which catalyze the hydrolysis of hydantoins [4,54]. As synthetic hydantoins are readily accessible by a variety of chemical syntheses, including Strecker reactions, enantioselective hydantoinase-catalyzed hydrolysis offers an attractive and general route to chiral amino acid derivatives. Moreover, hydantoins are easily racemized chemically or enzymatically by appropriate racemases, so that dynamic kinetic resolution with potential 100% conversion and complete enantioselectivity is theoretically possible. Indeed, a number of such cases using WT hydantoinases have been reported [54]. However, if asymmetric induction is poor or ifinversion ofenantioselectivity is desired, directed evolution can come to the rescue. Such a case has been reported, specifically in the production of i-methionine in a whole-cell system ( . coli) (Figure 2.13) [55]. [Pg.39]

In an asymmetric synthesis, the enantiomeric composition of the product remains constant as the reaction proceeds. In practice, ho vever, many enzymatic desymmetrizations undergo a subsequent kinetic resolution as illustrated in Figure 6.5. For instance, hydrolysis of a prochiral diacetate first gives the chiral monoalcohol monoester, but this product is also a substrate for the hydrolase, resulting in the production of... [Pg.136]

Dynamic kinetic resolution of racemic ketones proceeds through asymmetric reduction when the substrate does racemize and the product does not under the applied experimental conditions. Dynamic kinetic resolution of a-alkyl P-keto ester has been performed through enzymatic reduction. One isomer, out of the four possible products for the unselective reduction (Figure 8.38), can be selectively synthesized using biocatalyst, and by changing the biocatalyst or conditions, all of the isomers can be selectively synthesized [29]. [Pg.221]

Stopping the reaction before completion. This method is very similar to the asymmetric syntheses discussed on page 132. A method has been developed to evaluate the enantiomeric ratio of kinetic resolution using only the extent of substrate conversion. An important application of this method is the resolution of racemic alkenes by treatment with optically active diisopinocampheylborane, since alkenes do not easily lend themselves to conversion to diastereomers if no other functional groups are present. Another example is the resolution of allylic alcohols such as (56 with one... [Pg.154]


See other pages where Asymmetric kinetic resolution is mentioned: [Pg.140]    [Pg.715]    [Pg.1045]    [Pg.1062]    [Pg.140]    [Pg.715]    [Pg.1045]    [Pg.1062]    [Pg.126]    [Pg.167]    [Pg.320]    [Pg.323]    [Pg.26]    [Pg.51]    [Pg.229]    [Pg.250]    [Pg.250]    [Pg.261]    [Pg.263]    [Pg.264]    [Pg.132]    [Pg.304]    [Pg.63]    [Pg.295]    [Pg.296]    [Pg.73]    [Pg.91]    [Pg.130]    [Pg.136]    [Pg.171]   
See also in sourсe #XX -- [ Pg.88 , Pg.89 ]




SEARCH



Asymmetric Epoxidation and Kinetic Resolution

Asymmetric allylation kinetic resolution

Asymmetric catalysis dynamic kinetic resolution

Asymmetric catalysis kinetic resolutions

Asymmetric dihydroxylations kinetic resolutions

Asymmetric parallel kinetic resolutions

Asymmetric reactions kinetic resolution

Asymmetric transformation kinetic resolution Dynamic

Dynamic kinetic resolution asymmetric transfer hydrogenation

Dynamic kinetic resolution of racemic ketones through asymmetric reduction

Kinetic resolution, nucleophilic substitution asymmetric allylation

Sharpless asymmetric epoxidation Kinetic resolution using

© 2024 chempedia.info