Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation asymmetric enolate

The asymmetric alkylation of a carbonyl group is one of the most commonly used chirality transfer reactions. The chirality of a substrate can be transferred to the newly formed asymmetric carbon atom through this process. In surveying chiral enolate systems as a class of nucleophile, three general subdivisions can be made in such asymmetric nucleophilic addition reactions intra-annular, extra-annular, and chelation enforced intra-annular. [Pg.73]

Table 2-5 summarizes the results of the asymmetric alkylation (Scheme 2-17) of the lithium enolates derived from 22 or 23.28 When chiral auxiliary 22 or 23 is involved in the alkylation reactions, the substituent at C-4 of the oxazolidine ring determines the stereoselectivity and therefore controls the stereogenic outcome of the alkylation reaction. [Pg.85]

Besides their application in asymmetric alkylation, sultams can also be used as good chiral auxiliaries for asymmetric aldol reactions, and a / -product can be obtained with good selectivity. As can be seen in Scheme 3-14, reaction of the propionates derived from chiral auxiliary R -OH with LICA in THF affords the lithium enolates. Subsequent reaction with TBSC1 furnishes the 0-silyl ketene acetals 31, 33, and 35 with good yields.31 Upon reaction with TiCU complexes of an aldehyde, product /i-hydroxy carboxylates 32, 34, and 36 are obtained with high diastereoselectivity and good yield. Products from direct aldol reaction of the lithium enolate without conversion to the corresponding silyl ethers show no stereoselectivity.32... [Pg.148]

Asymmetric alkylation. Deprotonation of (-)-l provides exclusively an (E)-enolate, which is alkylated to provide a single diastereomeric product. De-complexation by oxidation [Br, I2, Ce(IV)] in the presence of water provides the corresponding acid with the same configuration. This sequence has been used for synthesis of the drug (- )-captopril (3). In this case liberation of the acyl group in the presence of the amine provides the amide 2. [Pg.2]

The utilization of a-amino acids and their derived 6-araino alcohols in asymmetric synthesis has been extensive. A number of procedures have been reported for the reduction of a variety of amino acid derivatives however, the direct reduction of a-am1no acids with borane has proven to be exceptionally convenient for laboratory-scale reactions. These reductions characteristically proceed in high yield with no perceptible racemization. The resulting p-amino alcohols can, in turn, be transformed into oxazolidinones, which have proven to be versatile chiral auxiliaries. Besides the highly diastereoselective aldol addition reactions, enolates of N-acyl oxazolidinones have been used in conjunction with asymmetric alkylations, halogenations, hydroxylations, acylations, and azide transfer processes, all of which proceed with excellent levels of stereoselectivity. [Pg.169]

Conversion of 2 to the highly crystalline oxazolidinone 3 with phosgene has been described by Thornton who has employed this substance as a chiral auxiliary in asymmetric aldol reactions of its N-propionyl derivative. Kelly has also used an oxazoline derived from 3 as a chiral auxiliary in asymmetric alkylation of a glycolate enolate. Oxazolidinone 3 has also been prepared from 2 with diethyl carbonate in the presence of potassium carbonate. The conversion of 2 to the oxazolidinone 3 is accomplished using triphosgene in this procedure because of the high toxicity of phosgene. [Pg.216]

One problem in the anti-selective Michael additions of A-metalated azomethine ylides is ready epimerization after the stereoselective carbon-carbon bond formation. The use of the camphor imines of ot-amino esters should work effectively because camphor is a readily available bulky chiral ketone. With the camphor auxiliary, high asymmetric induction as well as complete inhibition of the undesired epimerization is expected. The lithium enolates derived from the camphor imines of ot-amino esters have been used by McIntosh s group for asymmetric alkylations (106-109). Their Michael additions to some a, p-unsaturated carbonyl compounds have now been examined, but no diastereoselectivity has been observed (108). It is also known that the A-pinanylidene-substituted a-amino esters function as excellent Michael donors in asymmetric Michael additions (110). Lithiation of the camphor... [Pg.774]

There are few examples of asymmetric alkylations of enolates derived from open-chain ketones, presumably because alkylation proceeds with low stereoselectivity in such conforma-tionally flexible systems. [Pg.705]

Asymmetric Alkylation of Enolates Mediated by Chiral Phase Transfer... [Pg.718]

The formation of aldehyde enolates is complicated by the disposition of aldehydes to undergo aldol condensation. Therefore, there are very few examples of direct asymmetric alkylations of aldehydes. [Pg.718]

Asymmetric alkylation of aldehydes is possible via enamines or azaenolates of imine derivatives (see Section D. 1.1.1.4.). Alkylation is also possible via enol ethers or esters (see Section 1.1.1.3.1.2.), although the use of these methods for asymmetric synthesis has not yet been explored. [Pg.719]

Silyl enol ethers, enol esters and alkyl enol ethers of ketones and aldehydes can be C-alkylated with reactive alkylating agents in the presence of Lewis acids86-90. However, information regarding the use of these reactions for diastereoselcctive or asymmetric synthesis is still limited. [Pg.719]

Enolate 11 has also been employed in double asymmetric alkylations. Racemic 11 reacts with racemic 1-bromo-l-phenylethane (13) to produce a single diastereomeric alkylation product 1469. This result indicates that one enantiomer of 11 has selectively reacted with one enantiomer of the bromoalkane 13. probably via an SN2 mechanism. [Pg.939]

Asymmetric Alkylation of Enolates Using Chiral Ligands.167... [Pg.161]

Ci-TunePhos-modified Pd catalysts have found applications in allylic asymmetric alkylations, asymmetric hydrogenations of a- and /3-ketoesters <2006SL1169, 2000JOC6223>, allylphthalimides <2005AGE4933>, enol acetates <2002OL4495>, and asymmetric cycloadditions <2005TL8213>. [Pg.362]

Asymmetric alkylation andaldol condensations.2 The enolate (2) of 1 reacts with primary iodides to give essentially a single product (3), in which the alkyl group is syn to the cyclopentadieny ring. Aldol condensation with acetone leads to only one observable product (4). Only two isomeric products are obtained on aldol condensation with prochiral aldehydes and ketones as expected for a rranx-enolate, the i/ww-aldol predominates or is the exclusive product (5) as in the case of pivaldehyde. [Pg.73]

With these anthracene-linked dimeric cinchona-PTCs, the Najera group investigated the counterion effect in asymmetric alkylation of 1 by exchanging the classical chloride or bromide anion with tetrafluoroborate (BF4 ) or hexafluorophosphate (PF6-) anions (Scheme 4.10) [17]. They anticipated that both tetrafluoroborate and hexafluorophosphate could form less-tight ionic pairs than chloride or bromide, thus allowing a more easy and rapid complexation of the chiral ammonium cation with the enolate of 1, and therefore driving to a higher enantioselectivity. However, when... [Pg.61]

Among several chiral cyclic and acyclic diamines, (R,R)-cyclohexane-l,2-diamine-derived salen ligand (which can adopt the gauche conformation) was most effective in providing high enantioselectivity [38]. Further, the introduction of substituents at the 3,4, 5 and 6 positions on the aromatic ring of catalyst 39c was not advantageous, and resulted in low enantioselectivity [32,37,39]. The metal ions from first-row transition metals - particularly copper(II) and cobalt(II) - that could form square-planar complexes, produced catalytically active complexes for the asymmetric alkylation of amino ester enolates [38]. [Pg.150]

Metal-based asymmetric phase-transfer catalysts have mainly been used to catalyze two carbon-carbon bond-forming reactions (1) the asymmetric alkylation of amino acid-derived enolates and (2) Darzens condensations [5]. The alkylation ofprochiral glycine or alanine derivatives [3] is a popular and successful strategy for the preparation of acyclic a-amino acids and a-methyl-a-amino acids respectively (Scheme 8.1). In order to facilitate the generation of these enolates and to protect the amine substituent, an imine moiety is used to increase the acidity of the a-hydrogens, and therefore allow the use of relatively mild bases (such as metal hydroxides) to achieve the alkylation. In the case of a prochiral glycine-derived imine (Scheme 8.1 R3 = H), if monoalkylation is desired, the new chiral methine group... [Pg.161]

A Et2Zn-(5, S)-linked-BINOL (21) complex has been found suitable for chemos-elective enolate formation from a hydroxy ketone in the presence of isomerizable aliphatic iV-diphenylphosphinoylimines.103 The reaction proceeded smoothly and /9- alkyl-yS-amino-a-hydroxy ketones were obtained in good yield and high enantioselectivity (up to 99% ee). A titanium complex derived from 3-(3,5-diphenylphenyl)-BINOL (22) has exhibited an enhanced catalytic activity in the asymmetric alkylation of aldehydes, allowing the reduction of the catalyst amount to less than 1 mol% without deterioration in enantioselectivity.104... [Pg.294]

The normal U-shaped Hammett plots were found for both the catalysed [by a copper(II)salen complex (31)] and uncatalysed asymmetric alkylation of enolates by substituted benzyl bromides,126 indicating that both reactions occur via an. S N2 mechanism (Scheme 15). Because both reactions were faster when electron-withdrawing substituents were on the benzyl bromide, it was concluded that there was more bond formation than bond rupture in the. S N2 transition states. Because the curvature of the Hammett plot was greater for the catalysed reaction, it was concluded that the catalysed reaction has a later transition state with a greater negative charge on Ca. The role of the catalyst was to increase the nucleophilic character of the enolate anion. [Pg.239]

Mechanistic studies on the asymmetric alkylation of amino ester enolates have been performed using a copper(II)salen catalyst (12) (Scheme 5).32 Hammett data have indicated that the asymmetric alkylation proceeded by an asynchronous SN2 reaction and that the role of the catalyst is to enhance the nucleophilicity of the enolate. [Pg.254]

Asymmetric alkylation of dimclhoxyphosphoryl-AH 1 -(.S,)- -mclhylbenz i]acet-amide enolates has been reported 65 The synthesis of both stereoisomers from the same source of chirality has been achieved by changing the equivalents of LDA. [Pg.259]

The power of this methodology lies in the ability to prepare unnatural amino acid derivatives by asymmetric alkylation of prochiral enolates. Several asymmetric alkylations of the alanine derivative 7, catalysed by the C2-symmetrical quaternary ammonium salt 6d, have been reported these reactions yield unnatural amino acids such as 8 in high enantiomeric excess (Scheme 2) [7]. The chiral salen complex 9 has also been shown to be an effective catalyst for the preparation of a,a-dialkyl a-amino acids [8, 9]. For example, benzylation of the Schiff base 10 gave the a-methyl phenylalanine derivative 11 in 92% ee (Scheme 3) [8]. Similar reactions have been catalysed by the TADDOL 12, and also give a,a-dialkyl a-amino acids in good enantiomeric excess [10]. [Pg.127]

The asymmetric alkylation of other prochiral enolates has also been studied, and good results have been obtained provided that the intermediate enolate is stabilised by conjugation. For example, the extended enolate derived from 15 has been trapped with a range of alkylating agents to give a-alkylated esters such as 16 in 98% ee (Scheme 5) [12]. [Pg.127]

Stereoselective functionalization of enolates derived from 2-acyl-2-alkyl-1,3-dithiane 1-oxides Stereoselective enolate alkylation. There has been much interest over recent years in the enantio- and diastereocontrol of enolate alkylation.19 Most methods which do not rely on asymmetric alkylating agents hinge on a derivatization of the ketonic substrate with an enantiomerically pure auxiliary. Examples of such chiral auxiliaries include oxazolines20 and oxazolidi-nones.21 We reasoned that the sulfoxide unit present in our 2-acyl-2-alkyl-1,3-dithiane 1-oxide substrates might be expected to influence the transition-state geometry of a ketone enolate, perhaps by chelation to a metal counterion, and hence control the stereochemistry of alkylation. [Pg.127]

The catalytic routes to the asymmetric alkylation have been difficult to describe since the lithium enolates are reactive entities that can hardly be channeled through a pathway involving exclusively their aggregate with a chiral partner present in substoichiomet-ric amounts. Nevertheless, solutions have emerged progressively following Koga and... [Pg.600]

It is worthwhile to apply the memory of chirality principle to asymmetric alkylation of a-amino acids because nonproteinogenic a,a-disubstituted-a-amino acids are important class of compounds in the fields of medicinal and biological chemistry.21 Typical methods for their asymmetric synthesis involve chiral auxiliary-based enolate chemistry 22-24 However, the most straightforward synthesis would be direct asymmetric a-alkylation of the parent a-amino acids in the absence of external chiral sources. Asymmetric... [Pg.184]


See other pages where Alkylation asymmetric enolate is mentioned: [Pg.523]    [Pg.83]    [Pg.36]    [Pg.126]    [Pg.129]    [Pg.705]    [Pg.717]    [Pg.830]    [Pg.137]    [Pg.136]    [Pg.127]    [Pg.591]    [Pg.597]    [Pg.179]    [Pg.183]   
See also in sourсe #XX -- [ Pg.239 ]




SEARCH



Alkylations, asymmetric

Asymmetric Enolate Alkylations Using Chiral Auxiliaries

Asymmetric alkylation enolates

Asymmetric enolate

Asymmetric enolate Myers’ alkylation

Asymmetric enolate alkylations

Asymmetric enolate alkylations

Enol alkyl

Enolate alkylation

Enolates alkylation

Enolates asymmetric

Enols alkylation

© 2024 chempedia.info