Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aspects strength

Wood fiber, aspect Strength Modulus Strength Modulus Charpy... [Pg.103]

In the previous section, non-equilibrium behaviour was discussed, which is observed for particles with a deep minimum in the particle interactions at contact. In this final section, some examples of equilibrium phase behaviour in concentrated colloidal suspensions will be presented. Here we are concerned with purely repulsive particles (hard or soft spheres), or with particles with attractions of moderate strength and range (colloid-polymer and colloid-colloid mixtures). Although we shall focus mainly on equilibrium aspects, a few comments will be made about the associated kinetics as well [69, 70]. [Pg.2685]

The friction coefficient determines the strength of the viscous drag felt by atoms as they move through the medium its magnitude is related to the diffusion coefficient, D, through the relation Y= kgT/mD. Because the value of y is related to the rate of decay of velocity correlations in the medium, its numerical value determines the relative importance of the systematic dynamic and stochastic elements of the Langevin equation. At low values of the friction coefficient, the dynamical aspects dominate and Newtonian mechanics is recovered as y —> 0. At high values of y, the random collisions dominate and the motion is diffusion-like. [Pg.94]

The typical mechanical properties that qualify PCTFE as a unique engineering thermoplastic are provided ia Table 1 the cryogenic mechanical properties are recorded ia Table 2. Other unique aspects of PCTFE are resistance to cold flow due to high compressive strength, and low coefficient of thermal expansion over a wide temperature range. [Pg.393]

Other problems occur in the measurement of pH in unbuffered, low ionic strength media such as wet deposition (acid rain) and natural freshwaters (see Airpollution Groundwatermonitoring) (13). In these cases, studies have demonstrated that the principal sources of the measurement errors are associated with the performance of the reference electrode Hquid junction, changes in the sample pH during storage, and the nature of the standards used in caHbration. Considerable care must be exercised in all aspects of the measurement process to assure the quaHty of the pH values on these types of samples. [Pg.466]

The TAPPI monograph (64) is an excellent source of additional information on technical and economic aspects of wet strength. An informative overview of the chemistry and mechanisms involved in wet strength chemistry can be found in reference 65. [Pg.332]

A significant aspect of hip joint biomechanics is that the stmctural components are not normally subjected to constant loads. Rather, this joint is subject to unique compressive, torsion, tensile, and shear stress, sometimes simultaneously. Maximum loading occurs when the heel strikes down and the toe pushes off in walking. When an implant is in place its abiUty to withstand this repetitive loading is called its fatigue strength. If an implant is placed properly, its load is shared in an anatomically correct fashion with the bone. [Pg.189]

Platelet size, p.m Aspect ratio Bend Strength, MPa Fracture toughness, MPayTn... [Pg.57]

Polymers with differing morphologies respond differentiy to fillers (qv) and reinforcements. In crystalline resins, heat distortion temperature (HDT) increases as the aspect ratio and amount of filler and reinforcement are increased. In fact, glass reinforcement can result in the HDT approaching the melting point. Amorphous polymers are much less affected. Addition of fillers, however, intermpts amorphous polymer molecules physical interactions, and certain properties, such as impact strength, are reduced. [Pg.261]

There is also evidence for stable 3,4-adducts from the X-ray analysis of 2-amino-4-ethoxy-3,4-dihydropteridinium bromide, the nucleophilic addition product of 2-aminopteridine hydrobromide and ethanol (69JCS(B)489). The pH values obtained by potentiometric titration of (16) with acid and back-titration with alkali produces a hysteresis loop, indicating an equilibrium between various molecular species such as the anhydrous neutral form and the predominantly hydrated cation. Table 1 illustrates more aspects of this anomaly. 2-Aminop-teridine, paradoxically, is a stronger base than any of its methyl derivatives each dimethyl derivative is a weaker base than either of its parent monomethyl derivatives. Thus the base strengths decrease in the order in which they are expected to increase, with only the 2-amino-4,6,7-trimethylpteridine out of order, being more basic than the 4,7-dimethyl derivative. [Pg.267]

In this section three main aspects will be considered. Firstly, the basic strengths of the principal heterocyclic systems under review and the effects of structural modification on this parameter will be discussed. For reference some pK values are collected in Table 3. Secondly, the position of protonation in these carbon-protonating systems will be considered. Thirdly, the reactivity aspects of protonation are mentioned. Protonation yields in most cases highly reactive electrophilic species. Under conditions in which both protonated and non-protonated base co-exist, polymerization frequently occurs. Further ipso protonation of substituted derivatives may induce rearrangement, and also the protonated heterocycles are found to be subject to ring-opening attack by nucleophilic reagents. [Pg.46]

Type of Data In general, statistics deals with two types of data counts and measurements. Counts represent the number of discrete outcomes, such as the number of defective parts in a shipment, the number of lost-time accidents, and so forth. Measurement data are treated as a continuum. For example, the tensile strength of a synthetic yarn theoretically could be measured to any degree of precision. A subtle aspect associated with count and measurement data is that some types of count data can be dealt with through the application of techniques which have been developed for measurement data alone. This abihty is due to the fact that some simphfied measurement statistics sei ve as an excellent approximation for the more tedious count statistics. [Pg.487]

Wollastonite with an aspect ratio of 15 1 is useful as a replacement for asbestos and as a high-strength filler for plastics. The feed material with dgo of 45 [Lm was similarly ground. Beads of 0.3 mm gave faster grinding than 0.8 mm beads, and these corresponded to a bead-particle-size ratio of 19, confirming other results. [Pg.1869]

The lone remaining aspect of this topic that requires additional discussion is the fact that the mechanical threshold stress evolution is path-dependent. The fact that (df/dy)o in (7.41) is a function of y means that computations of material behavior must follow the actual high-rate deformational path to obtain the material strength f. This becomes a practical problem only in dealing with shock-wave compression. [Pg.234]

An important aspect of micromechanical evolution under conditions of shock-wave compression is the influence of shock-wave amplitude and pulse duration on residual strength. These effects are usually determined by shock-recovery experiments, a subject treated elsewhere in this book. Nevertheless, there are aspects of this subject that fit naturally into concepts associated with micromechanical constitutive behavior as discussed in this chapter. A brief discussion of shock-amplitude and pulse-duration hardening is presented here. [Pg.234]

That this is not always the case should be expected. In fact, if it was not for heterogeneous localization of some flow phenomena, it would be very diflicult to initiate secondary explosives, or to effect shock-induced chemical reactions in solids. Heterogeneous shear deformation in metals has also been invoked as an explanation for a reduction in shear strength in shock compression as compared to quasi-isentropic loading. We present here a brief discussion of some aspects of heterogeneous deformation in shock-loaded solids. [Pg.241]

Engineering design, then, involves many considerations (Fig. 1.7). The choice of a material must meet certain criteria on bulk and surface properties (strength and corrosion resistance, for example). But it must also be easy to fabricate it must appeal to potential consumers and it must compete economically with other alternative materials. In the next chapter we consider the economic aspects of this choice, returning in later chapters to a discussion of the other properties. [Pg.11]

Most materials scientists at an early stage in their university courses learn some elementary aspects of what is still miscalled strength of materials . This field incorporates elementary treatments of problems such as the elastic response of beams to continuous or localised loading, the distribution of torque across a shaft under torsion, or the elastic stresses in the components of a simple girder. Materials come into it only insofar as the specific elastic properties of a particular metal or timber determine the numerical values for some of the symbols in the algebraic treatment. This kind of simple theory is an example of continuum mechanics, and its derivation does not require any knowledge of the crystal structure or crystal properties of simple materials or of the microstructure of more complex materials. The specific aim is to design simple structures that will not exceed their elastic limit under load. [Pg.47]


See other pages where Aspects strength is mentioned: [Pg.209]    [Pg.209]    [Pg.457]    [Pg.685]    [Pg.35]    [Pg.651]    [Pg.394]    [Pg.397]    [Pg.322]    [Pg.97]    [Pg.475]    [Pg.125]    [Pg.402]    [Pg.131]    [Pg.517]    [Pg.169]    [Pg.275]    [Pg.415]    [Pg.465]    [Pg.82]    [Pg.83]    [Pg.106]    [Pg.472]    [Pg.343]    [Pg.46]    [Pg.533]    [Pg.1869]    [Pg.102]    [Pg.114]    [Pg.127]    [Pg.252]    [Pg.490]    [Pg.380]    [Pg.399]   
See also in sourсe #XX -- [ Pg.173 ]




SEARCH



© 2024 chempedia.info