Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arylpalladium

Palladation of aromatic compounds with Pd(OAc)2 gives the arylpalladium acetate 25 as an unstable intermediate (see Chapter 3, Section 5). A similar complex 26 is formed by the transmetallation of PdX2 with arylmetal compounds of main group metals such as Hg Those intermediates which have the Pd—C cr-bonds react with nucleophiles or undergo alkene insertion to give oxidized products and Pd(0) as shown below. Hence, these reactions proceed by consuming stoichiometric amounts of Pd(II) compounds, which are reduced to the Pd(0) state. Sometimes, but not always, the reduced Pd(0) is reoxidized in situ to the Pd(II) state. In such a case, the whole oxidation process becomes a catalytic cycle with regard to the Pd(II) compounds. This catalytic reaction is different mechanistically, however, from the Pd(0)-catalyzed reactions described in the next section. These stoichiometric and catalytic reactions are treated in Chapter 3. [Pg.14]

Aryl- or alkenylpalladium comple.xcs can be generated in situ by the trans-metallation of the aryl- or alkenylmercury compounds 386 or 389 with Pd(Il) (see Section 6). These species react with 1,3-cydohexadiene via the formation of the TT-allylpalladium intermediate 387, which is attacked intramolecularlv by the amide or carboxylate group, and the 1,2-difunctionalization takes place to give 388 and 390[322]. Similarly, the ort/trt-thallation of benzoic acid followed by transmetallation with Pd(II) forms the arylpalladium complex, which reacts with butadiene to afford the isocoumarin 391, achieving the 1,2-difunctionalization of butadiene[323]. [Pg.73]

The ij-arylpalladium bonds in these complexes are reactive and undergo insertion and substitution reactions, and the reactions offer useful methods for the regiospecific functionalization of the aromatic rings, although the reac-... [Pg.88]

Aromatic acyl halides and sulfonyl halides undergo oxidative addition, followed by facile elimination of CO and SO2 to form arylpalladium complexes. Benzenediazonium salts are the most reactive source of arylpalladium complexes. [Pg.127]

Oxidative addition of the sulfonyl chlorides 144 is followed by facile generation of SO2 to form arylpalladium complexes which undergo alkene inser-tion[112,113]. [Pg.148]

The diazonium salts 145 are another source of arylpalladium com-plexes[114]. They are the most reactive source of arylpalladium species and the reaction can be carried out at room temperature. In addition, they can be used for alkene insertion in the absence of a phosphine ligand using Pd2(dba)3 as a catalyst. This reaction consists of the indirect substitution reaction of an aromatic nitro group with an alkene. The use of diazonium salts is more convenient and synthetically useful than the use of aryl halides, because many aryl halides are prepared from diazonium salts. Diazotization of the aniline derivative 146 in aqueous solution and subsequent insertion of acrylate catalyzed by Pd(OAc)2 by the addition of MeOH are carried out as a one-pot reaction, affording the cinnamate 147 in good yield[115]. The A-nitroso-jV-arylacetamide 148 is prepared from acetanilides and used as another precursor of arylpalladium intermediate. It is more reactive than aryl iodides and bromides and reacts with alkenes at 40 °C without addition of a phosphine ligandfl 16]. [Pg.148]

The mechanism of action of the cyanation reaction is considered to progress as follows an oxidative addition reaction occurs between the aryl halide and a palladium(O) species to form an arylpalladium halide complex which then undergoes a ligand exchange reaction with CuCN thus transforming to an arylpalladium cyanide. Reductive elimination of the arylpalladium cyanide then gives the aryl cyanide. [Pg.26]

With regard to the mechanism of these Pd°-catalyzed reactions, little is known in addition to what is shown in Scheme 10-62. In our opinion, the much higher yields with diazonium tetrafluoroborates compared with the chlorides and bromides, and the low yields and diazo tar formation in the one-pot method using arylamines and tert-butyl nitrites (Kikukawa et al., 1981 a) indicate a heterolytic mechanism for reactions under optimal conditions. The arylpalladium compound is probably a tetra-fluoroborate salt of the cation Ar-Pd+, which dissociates into Ar+ +Pd° before or after addition to the alkene. An aryldiazenido complex of Pd(PPh3)3 (10.25) was obtained together with its dediazoniation product, the corresponding arylpalladium complex 10.26, in the reaction of Scheme 10-64 by Yamashita et al. (1980). Aryldiazenido complexes with compounds of transition metals other than Pd are discussed in the context of metal complexes with diazo compounds (Zollinger, 1995, Sec. 10.1). [Pg.253]

Carboxylic acids can be prepared in moderate-to-high yields by treatment of diazonium fluoroborates with carbon monoxide and palladium acetate or copper(II) chloride. The mixed anhydride ArCOOCOMe is an intermediate that can be isolated. Other mixed anhydrides can be prepared by the use of other salts instead of sodium acetate." An arylpalladium compound is probably an intermediate." ... [Pg.938]

Scheme 4. Arylpalladium dendrimers 17 assembled by hydrogen bonds... Scheme 4. Arylpalladium dendrimers 17 assembled by hydrogen bonds...
This new impurity proved to be derived from the Pd-catalyzed oxidation of DIPA to the enamine via P-hydride elimination. In fact, mixing Pd(OAc)2 with DIPA in DMF-d7 readily formed Pd black along with two species, primary amine and acetone, presumably derived from the enamine through hydrolysis. The resulting enamine or acetone then underwent a coupling reaction with iodoaniline 28. Heterocyclization through the arylpalladium(II) species provided 2-methyl indole 71, as shown in Scheme 4.19. [Pg.134]

A wide variety of heterocycles can be readily prepared by the heteroannulation of alkynes. For example, the palladium-catalyzed annulation of internal alkynes by 2-iodoanilines provides easy access to 2,3-disubstituted indoles by a process that involves initial reduction of Pd(OAc)2 to Pd(0), oxidative addition of the aryl halide to Pd(0), c/s-addition of the arylpalladium... [Pg.435]

The poor regioselectivity of alkyne insertion in our polycychc aromatic hydrocarbon synthesis (Scheme 17) suggested to us that perhaps the palladium intermediate in that process was actually undergoing migration from one aromatic ring to the other, perhaps by a Pd(IV) hydride intermediate, to establish an equilibrium mixture of two regioisomeric arylpalladium intermediates under our reaction conditions (Scheme 18). This, indeed, appears to be true as... [Pg.441]

Arylpalladium intermediates bearing neighboring imine functionality have... [Pg.446]

Relevant complexes have been isolated and fully characterized (4-10, 13-lb). The resulting arylpalladium complex 8 is able to react with various compounds such as terminal alkenes, alkynes, aryl boronic acids or hydrogen-transfer agents to give an organic molecule and palladium(O) (3, 17, 18). [Pg.450]

The necessity of an activator reagent has been explicitly revealed using arylpalladium complexes containing silanyl residues, which are stable in the absence of activator, but immediately undergo transmetalation upon addition of an activator (Equation (16)) 273... [Pg.331]

During the cross-couplings to form C—N, C—O, C—S, and C—P bonds, the arylpalladium halide complexes are converted to arylpalladium amide, alkoxide, thiolate, and phosphide complexes. Examples of each type of complex have now been isolated, and the reductive elimination of the organic products has been studied. Although the reductive elimination to form carbon-hydrogen and carbon-carbon bonds is common, reductive elimination to form carbon-heteroatom bonds has been studied only recently. This reductive elimination chemistry has been reviewed.23... [Pg.391]

Scheme 3 summarizes the reductive elimination chemistry of arylpalladium amides. Arylpalladium amido complexes containing PPh3 as the dative ligand were stable enough to isolate, and... [Pg.391]

Zhao and Larock have described the synthesis of carbazoles, indoles, and dibenzofurans 118 via a Ic type cyclization that follows a sequence of Pd-catalyzed cross-coupling of alkynes and aryl iodides 116, then nitrogen-directed palladium migration to an arylpalladium intermediate 117 that undergoes an intramolecular Mizoroki-Heck ring closure <06JOC5340>. [Pg.153]


See other pages where Arylpalladium is mentioned: [Pg.84]    [Pg.87]    [Pg.156]    [Pg.168]    [Pg.524]    [Pg.155]    [Pg.251]    [Pg.488]    [Pg.489]    [Pg.577]    [Pg.105]    [Pg.540]    [Pg.930]    [Pg.1029]    [Pg.45]    [Pg.45]    [Pg.47]    [Pg.716]    [Pg.126]    [Pg.559]    [Pg.585]    [Pg.456]    [Pg.190]    [Pg.374]    [Pg.390]    [Pg.391]    [Pg.392]    [Pg.392]    [Pg.392]    [Pg.393]    [Pg.394]    [Pg.487]   
See also in sourсe #XX -- [ Pg.211 ]




SEARCH



Arylpalladium alkoxides

Arylpalladium complexes

Arylpalladium complexes aryl halide oxidative additions

Arylpalladium complexes bonds

Arylpalladium complexes monophosphine ligands

Arylpalladium intermediates

Arylpalladium intermediates diarylpalladium

Arylpalladium phenoxide

Arylpalladium phenoxide complexes

Arylpalladium reagents

Ketones with arylpalladium complexes

Oxidative addition arylpalladium complexes

Palladium complexes arylpalladium

Reactions with Arylpalladium Compounds

Transmetallation arylpalladium complexes

Triflates arylpalladium complexes, oxidative addition

© 2024 chempedia.info