Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heck reaction aryl triflates

Heck reaction, palladium-catalyzed cross-coupling reactions between organohalides or triflates with olefins (72JOC2320), can take place inter- or intra-molecularly. It is a powerful carbon-carbon bond forming reaction for the preparation of alkenyl- and aryl-substituted alkenes in which only a catalytic amount of a palladium(O) complex is required. [Pg.22]

This reaction is not a bona fide Heck reaction per se for two reasons (a) the starting material underwent a Hg Pd transmetallation first rather than the oxidative addition of an aryl halide or triflate to palladium(O) (b) instead of undergoing a elimination step to give an enone, transformation 134 136... [Pg.23]

The original Sonogashira reaction uses copper(l) iodide as a co-catalyst, which converts the alkyne in situ into a copper acetylide. In a subsequent transmeta-lation reaction, the copper is replaced by the palladium complex. The reaction mechanism, with respect to the catalytic cycle, largely corresponds to the Heck reaction.Besides the usual aryl and vinyl halides, i.e. bromides and iodides, trifluoromethanesulfonates (triflates) may be employed. The Sonogashira reaction is well-suited for the synthesis of unsymmetrical bis-2xy ethynes, e.g. 23, which can be prepared as outlined in the following scheme, in a one-pot reaction by applying the so-called sila-Sonogashira reaction ... [Pg.158]

The Heck reaction consists in the Pd(0)-catalysed coupling of alkenes with an aryl or alkenyl halide or triflate in the presence of a base to form a substituted alkene (Scheme 7.1). The reaction is performed in the presence of an organopalladium catalyst. The halide or triflate is an aryl or a vinyl compound and the alkene contains at least one proton. [Pg.233]

Scheme 7.2 Heck reactions of dihydrofuran with aryl or alkenyl triflates with R)-BITIANP. Scheme 7.2 Heck reactions of dihydrofuran with aryl or alkenyl triflates with R)-BITIANP.
Transition metal-catalyzed transformations are of major importance in synthetic organic chemistry [1], This reflects also the increasing number of domino processes starting with such a reaction. In particular, Pd-catalyzed domino transformations have seen an astounding development over the past years with the Heck reaction [2] - the Pd-catalyzed transformation of aryl halides or triflates as well as of alkenyl halides or triflates with alkenes or alkynes - being used most often. This has been combined with another Heck reaction or a cross-coupling reaction [3] such as Suzuki, Stille, and Sonogashira reactions. Moreover, several examples have been published with a Tsuji-Trost reaction [lb, 4], a carbonylation, a pericyclic or an aldol reaction as the second step. [Pg.359]

Palladium-catalyzed arylation of olefins and the analogous alkenylation (Heck reaction) are the useful synthetic methods for carbon-carbon bond formation.60 Although these reactions have been known for over 20 years, it was only in 1989 that the asymmetric Heck reaction was pioneered in independent work by Sato et al.60d and Carpenter et al.61 These scientists demonstrated that intramolecular cyclization of an alkenyl iodide or triflate yielded chiral cyclic compounds with approximately 45% ee. The first example of the intermolecular asymmetric Heck reaction was reported by Ozawa et al.60c Under appropriate conditions, the major product was obtained in over 96% ee for a variety of aryl triflates.62... [Pg.471]

In these Heck reactions some degree of enantioselectivity (up to 83% ee) is achieved in the presence of (/ )-BINAP, although the yields of Heck products are often very low in the highest degree of enantioselectivity (e.g., 19% isolated yield at 83% ee) [93]. An example of a tandem Heck reaction is shown below involving the arylation of dihydropyrrole 132 with 1-naphthyl triflate (133) [92]. Complete chirality transfer is observed for the arylation of 134 to 135. [Pg.55]

The vinyl triflate of Komfeld s ketone has been subjected to Heck reactions with methyl acrylate, methyl methacrylate, and methyl 3-(Af-rerf-butoxycarbonyl-lV-methyl)amino-2-methylenepropionate leading to a formal synthesis of lysergic acid [259]. A similar Heck reaction between l-(phenylsulfonyl)indol-5-yl triflate and dehydroalanine methyl ester was described by this research group [260]. Chloropyrazines undergo Heck couplings with both indole and 1-tosylindole, and these reactions are discussed in the pyrazine Chapter [261], Rajeswaran and Srinivasan described an interesting arylation of bromomethyl indole 229 with arenes [262]. Subsequent desulfurization and hydrolysis furnishes 2-arylmethylindoles 230. Bis-indole 231 was also prepared in this study. [Pg.126]

The research group of Cacchi made extensive use of these tandem cyclization-Heck reactions to prepare a wide variety of indoles [311-314], For example, vinyl triflates react with o-aminophenylacetylene to afford an array of 2-substituted indoles in excellent yield, e.g., 356 to 357 [312], and a similar reaction of 358 with aryl iodides leads to an excellent synthesis of 3-arylindoles 359 [313],... [Pg.155]

The Heck reaction is a C-C coupling reaction where an unsaturated hydrocarbon or arene halide/triflate/sulfonate reacts with an alkene in presence of a base and Pd(0) catalyst so as to form a substituted alkene. Kaufmann et al. showed that the Heck reaction carried out in presence of ILs such as tetra-alkyl ammonium and phosphonium salts without the phosphine ligands, resulted in high yields of product. They attributed the activity to the stabilizing effect of ammonium and phosphonium salts on Pd(0) species. Carmichael et al. used ionic liquids containing either A,A -dialkylimidazolium and A-alkylpyridinium cations with anions such as halide, hexafluorophosphate or tetrafiuoroborate to carry out reactions of aryl halide and benzoic anhydride with ethyl and butyl acrylates in presence of Pd catalyst. An example of iodobenzene reacting with ethyl acrylate to give trans-et vy cinnamate is shown in Scheme 14. [Pg.168]

Regio- and enantioselective Heck reactions of 2 3-dihydrofuran with aryl and alkenyl triflates in the presence of the chiral ligand (R)-BITIANP provides 2-substituted 23-dihydro-furans with complete regioselectivity, high enantioselectivity (86-96% ee) and good yields (76-93%) <99CC1811>. A catalytic oxyselenylation-deselenylation reaction of alkenes offers a stereoselective one-pot conversion of alkenes into 2 -dihydrofurans <99EF0797>. [Pg.149]

As noted for the Heck reaction, aryl, alkenyl, and alkynyl bromides, iodides, and triflates are best for the oxidative addition. However, aromatic, heteroaromatic, alkenyl, and even alkyl boronic acids and esters can be coupled effectively. The reaction appears almost oblivious to other functional groups present ... [Pg.253]

Cinnamic esters 691 react with aryl halides via a domino Heck reaction-lactonization process in molten //-Iki () c///-B111 hr to yield 4-arylcoumarins (Scheme 170) <2005ASC308>. Likewise, the palladium(n)-cata-lyzed reaction of cinnamic esters with vinyl triflates yields 4-vinyl coumarins <1996SL568>. [Pg.564]

Fig. 16.35 (part I). Heck reaction of an aryl triflate with acrylic acid methyl ester under "classical," i.e., the Richard Heck conditions with a mechanistic analysis of the beginning of the reaction sequence, namely the formation of the catalytically active Pd(0) complex (= compound F). [Pg.728]

Although the Heck reaction may be efficiently employed for synthesis, it has its limits that should not go unmentioned the Heck reaction can not—at least not intermolecularly—couple alkenyl triflates (-bromides, -iodides) or aryl triflates (-bromides, -iodides) with metal-free aromatic compounds in the same way as it is possible with the same substrates and metal-free alkenes. The reason is step 4 of the mechanism in Figure 16.35 (part II). If an aromatic compound instead of an alkene was the coupling partner the aromaticity with this carbopallada-tion of a C=C double bond would have to be sacrificed in step 4. Typically, Heck reactions can only be run at a temperature of 100 °C even if they proceed without any such energetic effort. This is why this additional energetically demanding loss of aromaticity is not feasible. [Pg.731]

The palladium-catalyzed arylation and alkenylation of olefins, which were first discovered in the 1970 s by Heck (7,2) and Mizoroki (3) and have been often called the "Heck reaction", are versatile synthetic means for making a carbon-carbon bond. These reactions have been extensively used for organic synthesis during the past two decades (4-7). However, no reports on the "asymmetric Heck reaction" have been appeared until very recently. Shibasaki reported an asymmetric intramolecular cyclization of alkenyl iodides to give c/j-decalin derivatives of 80-91% ee (8-10). Overman reported an intramolecular cyclization of alkenyl triflate, giving a chiral quaternary carbon center of 45% ee (77). We report herein the first example of intermolecular asymmetric Heck-type arylation of cyclic olefins catalyzed by (7 )-BINAP-coordinated palladium complexes (Scheme 1) (12,13). [Pg.80]

Certain alkenes can be alkenylated by alkenyl triflates (bromides, iodides) and ary-lated by aryl triflates (bromides, iodides) even though they do not contain a metal. For these so called Heck reactions to occur, catalytic amounts of palladium(II) acetate and triphenylphosphine, as well as stoichiometric amounts of triethylamine, need to be added to the mixture of the starting materials. The amine serves to reduce Pd(II) to the catalytically active Pd(0) complex (cf. Section 13.3.4). The amine also has an important second role in that it neutralizes the strong acid formed in the reaction (TfOH, HBr, and HI). Apart from that, there also exists a variation of the Heck reaction that works without triphenylphosphine (examples in Figures 13.27 and 13.29). [Pg.539]

The chiral substituted 1,3-dioxepine derivative 231 has been prepared in 96% ee (50% conversion) by an asymmetric Heck reaction with the alkene 229 and the aryl triflate 230 [01OL161 ]. [Pg.412]

The palladium-catalysed addition of aryl, vinyl, or substituted vinyl groups to organic halides or triflates, the Heck reaction, is one of the most synthetically useful palladium-catalysed reactions. The method is very efficient, and carries out a transformation that is difficult by more traditional techniques. The mechanism involves the oxidative addition of the halide, insertion of the olefin, and elimination of the product by a p-hydride elimination process. A base then regenerates the palladi-um(0) catalyst. The whole process is a catalytic cycle. [Pg.1321]

The proposed mechanism for a standard Heck reaction is depicted in Scheme 6.5. Generally, a haloalkene or haloarene undergoes oxidative addition to an in situ generated, coordinatively unsaturated 14-electron palladium(O) complex, but other substrates such as tosylates, triflates or diazonium salts can also be applied. Subsequent, sy -insertion into the C=C double bond of a complexed olefin yields a t7-(j -alkenyl) or (j- aryl)alkylpalladium complex. If no hydrogen atom in a pseudo cis-position relative to the palladium is present, an internal rotation step is required prior to syw-elimination of the olefin to afford the traws-olefin product and a palladium(II) hydride complex. The latter is restored to the initial Pd(0) species by base-induced reductive elimination.137"401... [Pg.121]

The Heck reaction, i.e. the palladium(O) catalyzed vinylation of aryl- or vinylhalides (or the corresponding triflates), belongs undoubtedly to the most important metal-catalyzed C-C coupling reactions [3, 4]. Accordingly, it enjoys increasing application as a key reaction in total synthesis [5]. [Pg.136]


See other pages where Heck reaction aryl triflates is mentioned: [Pg.234]    [Pg.235]    [Pg.384]    [Pg.316]    [Pg.55]    [Pg.505]    [Pg.492]    [Pg.27]    [Pg.169]    [Pg.187]    [Pg.684]    [Pg.1824]    [Pg.175]    [Pg.340]    [Pg.700]    [Pg.719]    [Pg.726]    [Pg.1268]    [Pg.1321]    [Pg.539]    [Pg.1321]    [Pg.219]    [Pg.137]    [Pg.138]   
See also in sourсe #XX -- [ Pg.122 ]




SEARCH



Aryl Heck reaction

Aryl triflate

Aryl triflates

Aryl triflates arylation

Arylation Heck reaction

Heck arylation

Heck arylations

Heck reaction triflates

Triflates reactions

© 2024 chempedia.info