Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl-Substituted Ligands

Unlike their O-counterparts, namely the aryloxides [92], the anilides have gained entry into lanthanide chemistry only very recently [93]. Their suitability as ligands in /-element chemistry was demonstrated in [K(THF)2][U(NHC6H3iPr2-2,6)5] [94], [Pg.50]


The relevance of the weak particle-surface interaction could also be demonstrated when alkyl- instead of aryl-substituted ligands were used, when there was no ordering process at all. However, if the same clusters with an alkyl surface were used in combination with saturated polymers such as poly(methylmethacrylate) (PMMA), then a reasonable ordering could be observed again. [Pg.346]

Classic A/-heterocychc ligands, eg, bipyridyl (bipy), terpyridyl, imidazole, pyrazine, phenanthroline, piperazine (including alkyl- and aryl-substituted derivatives), and polypyrazol-l-yl-borates (bis, tris, and tetra), have all been found to coordinate Th(IV) chlorides, perchlorates, and nitrates. The tripodal hydrotris(pyrazolyl)borates, HBPz, have been used to stabilize organometaHic complexes (31). Bis-porphyrin Th(IV) "sandwich" complexes have been... [Pg.37]

CyclooctatetraenylCompounds. Sandwich-type complexes of cyclooctatetraene (COT), CgH g, are well known. The chemistry of thorium—COT complexes is similar to that of its Cp analogues in steric number and electronic configurations. Thorocene [12702-09-9], COT2Th, (16), the simplest of the COT derivatives, has been prepared by the interaction of ThCl [10026-08-1] and two equivalents of K CgHg. Thorocene derivatives with alkyl-, sdyl-, and aryl-substituted COT ligands have also been described. These compounds are thermally stable, air-sensitive, and appear to have substantial ionic character. [Pg.42]

Asymmetric epoxidation of olefins with ruthenium catalysts based either on chiral porphyrins or on pyridine-2,6-bisoxazoline (pybox) ligands has been reported (Scheme 6.21). Berkessel et al. reported that catalysts 27 and 28 were efficient catalysts for the enantioselective epoxidation of aryl-substituted olefins (Table 6.10) [139]. Enantioselectivities of up to 83% were obtained in the epoxidation of 1,2-dihydronaphthalene with catalyst 28 and 2,6-DCPNO. Simple olefins such as oct-l-ene reacted poorly and gave epoxides with low enantioselectivity. The use of pybox ligands in ruthenium-catalyzed asymmetric epoxidations was first reported by Nishiyama et al., who used catalyst 30 in combination with iodosyl benzene, bisacetoxyiodo benzene [PhI(OAc)2], or TBHP for the oxidation of trons-stilbene [140], In their best result, with PhI(OAc)2 as oxidant, they obtained trons-stilbene oxide in 80% yield and with 63% ee. More recently, Beller and coworkers have reexamined this catalytic system, finding that asymmetric epoxidations could be perfonned with ruthenium catalysts 29 and 30 and 30% aqueous hydrogen peroxide (Table 6.11) [141]. Development of the pybox ligand provided ruthenium complex 31, which turned out to be the most efficient catalyst for asymmetric... [Pg.222]

Combination of nickel bromide (or nickel acetylacetonate) and A. A -dibutylnorephcdrinc catalyzed the enantioselective conjugate addition of dialkylzincs to a./Tunsaturated ketones to afford optically active //-substituted ketones in up to ca. 50% ee53. Use of the nickel(II) bipyridyl-chiral ligand complex in acetonitrile/toluenc as an in situ prepared catalyst system afforded the //-substituted ketones 2, from aryl-substituted enones 1, in up to 90% ee54. [Pg.910]

Ru—C(carbene) bond distances are shorter than Ru—P bond lengths, but this can simply be explained by the difference in covalent radii between P and The variation of Ru—C(carbene) bond distances among ruthenium carbene complexes illustrates that nucleophilic carbene ligands are better donors when alkyl, instead of aryl, groups are present, with the exception of 6. This anomaly can be explained on the basis of large steric demands of the adamantyl groups on the imidazole framework which hinder the carbene lone pair overlap with metal orbitals. Comparison of the Ru—C(carbene) bond distances among the aryl-substituted carbenes show... [Pg.187]

Scott et al. [45] prepared diimine derivatives of 2,2 -diamino-6,6 -dimethyl-biphenyl (as structure 37 in Scheme 19) as copper chelates for the catalyzed cyclopropanation reaction. All catalysts were active in this reaction but enan-tioselectivities varied importantly according to the substitution pattern of the imine aryl group only ortho-substituted ligands (by chloride or methyl groups) led to products with measurable enantioselectivity for the model test reaction (up to 57% ee with 37). [Pg.108]

Trost and Hachiya [140] studied asymmetric molybdenum-catalyzed alkylations. Interestingly, they noticed that the regioselectivity of this transformation performed with a non-symmetric allylic substrate varied according to the nature of the metal Pd-catalyzed substitutions on aryl-substituted allyl systems led to attack at the less substituted carbon, whereas molybdenum catalysis afforded the more substituted product. They prepared the bis(pyridylamide) ligand 105 (Scheme 55) and synthesized the corresponding Mo-complex from (C2H5 - CN)3Mo(CO)3. With such a catalyst, the allylic... [Pg.138]

Non-ionic thiourea derivatives have been used as ligands for metal complexes [63,64] as well as anionic thioureas and, in both cases, coordination in metal clusters has also been described [65,66]. Examples of mononuclear complexes of simple alkyl- or aryl-substituted thiourea monoanions, containing N,S-chelating ligands (Scheme 11), have been reported for rhodium(III) [67,68], iridium and many other transition metals, such as chromium(III), technetium(III), rhenium(V), aluminium, ruthenium, osmium, platinum [69] and palladium [70]. Many complexes with N,S-chelating monothioureas were prepared with two triphenylphosphines as substituents. [Pg.240]

The ease of dehalogenation of C H X by Ni(ll)/ IMes HCl 1/NaO Pr decreased in the order 1 > Br > Cl F. Subsequent work showed that a 1 1 combination of Ni and NHC in the presence of NaOCHEt resulted in enhanced reactivity towards aryl fluorides [6], Again, the A-mesityl substituted ligand IMes HCl 1 imparted the highest level of catalytic activity. Table 8.2 illustrates that hydrodefluorination is sensitive to both the nature of the substituents on the aromatic ring and the specific regioisomer. Thus, 2- or 4-fluorotoluene (Table 8.2, entry 2) proceeded to only 30% conversion after 15 h, whereas quantitative conversion of 2-fluoroanisole (Table 8.2, entry 3) and high conversion of 3-fluoropyridine (Table 8.2, entry 5) was achieved in only 2-3.5 h. The reactivity of 2-fluoropyridine was compromised by more efficient nucleophilic aromatic substitution. [Pg.210]

An extensive array of chiral phosphine ligands has been tested for the asymmetric rhodium-catalyzed hydroboration of aryl-substituted alkenes. It is well known that cationic Rh complexes bearing chelating phosphine ligands (e.g., dppf) result in Markovnikoff addition of HBcat to vinylarenes to afford branched boryl compounds. These can then be oxidized through to the corresponding chiral alcohol (11) (Equation (5)) ... [Pg.272]


See other pages where Aryl-Substituted Ligands is mentioned: [Pg.995]    [Pg.210]    [Pg.50]    [Pg.267]    [Pg.357]    [Pg.357]    [Pg.323]    [Pg.779]    [Pg.323]    [Pg.153]    [Pg.1641]    [Pg.166]    [Pg.240]    [Pg.39]    [Pg.995]    [Pg.210]    [Pg.50]    [Pg.267]    [Pg.357]    [Pg.357]    [Pg.323]    [Pg.779]    [Pg.323]    [Pg.153]    [Pg.1641]    [Pg.166]    [Pg.240]    [Pg.39]    [Pg.220]    [Pg.282]    [Pg.164]    [Pg.312]    [Pg.98]    [Pg.35]    [Pg.190]    [Pg.198]    [Pg.33]    [Pg.207]    [Pg.216]    [Pg.37]    [Pg.384]    [Pg.234]    [Pg.522]    [Pg.679]    [Pg.15]    [Pg.174]    [Pg.235]    [Pg.347]    [Pg.647]    [Pg.23]    [Pg.220]    [Pg.121]    [Pg.241]   


SEARCH



Aryl ligands

Aryl substituted

Aryl-substitution

Arylation ligand

Ligand substitution

© 2024 chempedia.info