Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arsenides metal

M.p. — 116-3 C, b.p. —55°C. An unstable poisonous gas (metal arsenide plus acid or arsenic compounds plus Zn plus dil. acid, AsCla plus LiAlH4) which decomposes to As... [Pg.42]

If antimony and arsenic are present ia the feed, copper and iron react to form the respective antimonides and arsenides known as speiss (specific gravity 6.0). If it is preferred to remove copper ia a speiss layer, the sulfur ia the siater must be reduced and the addition of scrap iron may be necessary to encourage speiss formation. Matte and speiss are usually sent to a copper smelter for recovery of the metals. [Pg.36]

PGM Concentration. The ore mined from the Merensky Reef in South Africa has a maximum PGM content of 8.1 g/1, of which 50—60% is platinum, and 20—25% palladium. The PGMs are in the form of a ferroplatinum alloy, or as their sulfides, arsenides, or teUurides. The aim of the concentration process is to separate from the ore a cmde metal concentrate, having a PGM content of 60%. The majority of other metals, such as nickel and copper, are separated out at this stage for further refining. [Pg.166]

Elemental arsenic combines with many metals to form arsenides. When heated in the presence of halogens it forms trihaUdes however, pentahaUdes with the exception of AsF (2) and the unstable AsQ. are not readily formed. It reacts with sulfur to form the compounds AS2S2, AsS, As2S, and complex mixtures in various proportions (see Arsenic compounds). [Pg.326]

Arsine is formed when any inorganic arsenic-bearing material is brought in contact with zinc and sulfuric acid. The arsenides of the electropositive metals are decomposed with the formation of arsine by water or acid. Calcium arsenide [12255-53-7] Ca2As2, treated with water gives a 14% yield of arsine. Better yields (60—90%) are obtained by decomposing a solution of sodium arsenide [12044-25-6] Na As, in Hquid ammonia with ammonium bromide (14,15). Arsine may be accidentally formed by the reaction of arsenic impurities in commercial acids stored in metal tanks, so that a test should be made for... [Pg.332]

A simple electrochemical flow-through cell with powder carbon as cathodic material was used and optimized. The influence of the generation current, concentration of the catholyte, carrier stream, flow rate of the sample and interferences by other metals on the generation of hydrogen arsenide were studied. This system requires only a small sample volume and is very easily automatized. The electrochemical HG technique combined with AAS is a well-established method for achieving the required high sensitivity and low detection limits. [Pg.135]

Atomic absorption spectroscopy of VPD solutions (VPD-AAS) and instrumental neutron activation analysis (INAA) offer similar detection limits for metallic impurities with silicon substrates. The main advantage of TXRF, compared to VPD-AAS, is its multielement capability AAS is a sequential technique that requires a specific lamp to detect each element. Furthermore, the problem of blank values is of little importance with TXRF because no handling of the analytical solution is involved. On the other hand, adequately sensitive detection of sodium is possible only by using VPD-AAS. INAA is basically a bulk analysis technique, while TXRF is sensitive only to the surface. In addition, TXRF is fast, with an typical analysis time of 1000 s turn-around times for INAA are on the order of weeks. Gallium arsenide surfaces can be analyzed neither by AAS nor by INAA. [Pg.355]

Arsenic exists as grey, yellow and black forms of differing physical properties and susceptibilities towards atmospheric oxygen. The general chemistry is similar to that of phosphorus but whereas phosphorus is non-metallic, the common form of arsenic is metallic. Traces of arsenides may be present in metallic residues and drosses these may yield highly toxic arsine, ASH3, with water. [Pg.31]

Arsine, AsHs, is formed when many As-containing compounds are reduced with nascent hydrogen and its decomposition on a heated glass surface to form a metallic mirror formed the basis of Marsh s test for the element. The low-temperature reduction of AsCls with LiAlH4 in diethyl ether solution gives good yields of the gas as does the dilute acid hydrolysis of many arsenides of electropositive elements (Na, Mg, Zn, etc.). Similar reactions yield stibine, e.g. ... [Pg.558]

More than 200 ores are known to contain cobalt but only a few are of commercial value. The more important are arsenides and sulfides such as smaltite, C0AS2, cobaltite (or cobalt glance), CoAsS, and linnaeite, C03S4. These are invariably associated with nickel, and often also with copper and lead, and it is usually obtained as a byproduct or coproduct in the recovery of these metals. The world s major sources of cobalt are the African continent and Canada with smaller reserves in Australia and the former USSR. All the platinum metals are generally associated with each other and rhodium and iridium therefore occur wherever the other platinum metals are found. However, the relative proportions of the individual metals are by no means constant and the more important sources of rhodium are the nickel-copper-sulfide ores found in South Africa and in Sudbury, Canada, which contain about 0.1% Rh. Iridium is usually obtained from native osmiridium (Ir 50%) or iridiosmium (Ir 70%) found chiefiy in Alaska as well as South Africa. [Pg.1114]

Although estimates of their abundances vary considerably, Pd and Pt (approximately 0.015 and 0.01 ppm respectively) are much rarer than Ni. They are generally associated with the other platinum metals and occur either native in placer (i.e. alluvial) deposits or as sulfides or arsenides in Ni, Cu and Fe sulfide ores. Until the 1820s all platinum metals came from South America, but in 1819 the first of a series of rich placer deposits which were to make Russia the chief source of the metals for the next century, was discovered in the Urals. More recently however, the copper-nickel ores in South Africa and Russia (where the Noril sk-Talnakh deposits are well inside the Arctic Circle) have become the major sources, supplemented by supplies from Sudbury. [Pg.1145]

Arsenic and antimony are metalloids. They have been known in the pure state since ancient times because they are easily obtained from their ores (Fig. 15.3). In the elemental state, they are used primarily in the semiconductor industry and in the lead alloys used as electrodes in storage batteries. Gallium arsenide is used in lasers, including the lasers used in CD players. Metallic bismuth, with its large, weakly bonded atoms, has a low melting point and is used in alloys that serve as fire detectors in sprinkler systems the alloy melts when a fire breaks out nearby, and the sprinkler system is activated. Like ice, solid bismuth is less dense than the liquid. As a result, molten bismuth does not shrink when it solidifies in molds, and so it is used to make low-temperature castings. [Pg.745]

Newton s second law, L0 nickel, 49, 665 nickel arsenide structure, 201 nickel surface, 189 nickel tetracarbonyl, 665 nickel-metal hydride cell, 520 NiMH cell, 520 nitrate ion, 69, 99 nitration, 745 nitric acid, 629 nitric oxide, 73, 629 oxidation, 549 nitride, 627 nitriding, 208 nitrite ion, 102 nitrogen, 120, 624 bonding in, 108 configuration, 35 photoelectron spectrum, 120... [Pg.1035]

In accordance with the electropositive nature of the bridgehead atoms, all di(pyridyl) substituted anions behave like amides with the electron density accumulated at the ring nitrogen atoms rather than carbanions, phosphides or arsenides. The divalent bridging atoms (N, P, As) in the related complexes should in principle be able to coordinate either one or even two further Lewis acidic metals to form heterobimetallic derivatives. According to the mesomeric structures, (Scheme 7), it can act as a 2e- or even a 4e-donor. However, theoretical calculations, supported by experiments, have shown that while in the amides (E = N) the amido nitrogen does function as... [Pg.96]


See other pages where Arsenides metal is mentioned: [Pg.34]    [Pg.34]    [Pg.42]    [Pg.42]    [Pg.42]    [Pg.272]    [Pg.134]    [Pg.2901]    [Pg.88]    [Pg.160]    [Pg.164]    [Pg.528]    [Pg.68]    [Pg.391]    [Pg.525]    [Pg.165]    [Pg.202]    [Pg.368]    [Pg.333]    [Pg.224]    [Pg.17]    [Pg.93]    [Pg.88]    [Pg.300]    [Pg.548]    [Pg.552]    [Pg.554]    [Pg.558]    [Pg.679]    [Pg.766]    [Pg.34]    [Pg.331]    [Pg.96]    [Pg.98]   


SEARCH



Arsenides

Arsenides transition-metal

© 2024 chempedia.info