Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatics direct acylation

When aiomatics aie present, they can capture the intermediate vinyl cation to give P-aryl-a,P-unsatutated ketones (182). Thus acylation of alkyl or aryl acetylenes with acyhum salts in the presence of aromatics gives a,P-unsaturated ketones with a trisubstituted double bond. The mild reaction conditions employed do not cause direct acylation of aromatics. [Pg.563]

Under the reaction conditions the direct acylation of the aromatic hydrocarbons with the acylium ion does not take place. Instead, the intermediate vinyl carboca-tion reacts with the aromatics to form the 20 aryl-substituted vinyl ketones. [Pg.421]

Friedel-Crafts reaction of phosgene with heterocyclic aromatic compounds is also difficult to stop at the acid chloride stage. However, under selected conditions, heteroaromatics such as thiophene can be directly acylated to give thiophenecarbonyl chloride [Scheme T9] (Ref. 15) ... [Pg.115]

Whilst bismuth (III) chloride is an efficient catalyst for the aromatic ether acylation by acid chlorides or anhydrides, it is not strong enough to carry out the acylation of non activated aromatics. However, the potential of using a wide range of Bi (III) salts as catalysts (ref. 41), in particular the oxide, the oxychloride and the carboxylates, all non hygroscopic compounds, offers advantages, and is indicative of the great versatility of Bi (III) derivatives. Moreover, the Bi salts obtained after hydrolytic workup are directly reusable. [Pg.25]

Keller and coworkers succeeded in the preparation of several aromatic carboxylic acid-activating starter enzymes involved in the biosynthesis of actinomycin (4-methyl-3-hydroxyanthranilic acid) (105,113,114), triostin (qninoxaline-2-carboxylic acid) (105,115), and mikamycin (3-hydroxypicolinic acid) (105,116). More recently, related enzymes have been identified in the Actinomycetes that form the thiopeptides nosihep-tide and thiostreptone (117,118), and in the pristinamyctn biosynthetic system (de Crecy-Lagard V, personal communication). Whether direct acylation of the pantetheine-attached starter amino acid occurs, or an additional transferase frinction is required, has not been settled. [Pg.230]

The stronger directing effects present in the indoline ring can sometimes be used to advantage to prepare C-substituted indoles. The aniline type of nitrogen present in indoline favours 5,7-substitution. After the substituent is introduced the indoline ring can be aromatized by dehydrogenation (see Section 15.2 for further discussion). A procedure for 7-acylation of indoline... [Pg.136]

Because the position of electrophilic attack on an aromatic nng is controlled by the direct ing effects of substituents already present the preparation of disubstituted aromatic com pounds requires that careful thought be given to the order of introduction of the two groups Compare the independent preparations of m bromoacetophenone and p bromoace tophenone from benzene Both syntheses require a Friedel-Crafts acylation step and a bromination step but the major product is determined by the order m which the two steps are carried out When the meta directing acetyl group is introduced first the final product IS m bromoacetophenone... [Pg.504]

Ketone formation can also be avoided if one of the functional acyl halogens ia phosgene is blocked. Carbamyl chlorides, readily obtained by the reaction of phosgene with ammonia or amines, are suitable reagents for the preparation of amides ia direct Friedel-Crafts acylation of aromatics. The resulting amides can be hydroly2ed to the corresponding acids (134) ... [Pg.560]

Liquid crystal polyesters are made by a different route. Because they are phenoHc esters, they cannot be made by direct ester exchange between a diphenol and a lower dialkyl ester due to unfavorable reactivities. The usual method is the so-called reverse ester exchange or acidolysis reaction (96) where the phenoHc hydroxyl groups are acylated with a lower aHphatic acid anhydride, eg, acetic or propionic anhydride, and the acetate or propionate ester is heated with an aromatic dicarboxyHc acid, sometimes in the presence of a catalyst. The phenoHc polyester forms readily as the volatile lower acid distills from the reaction mixture. Many Hquid crystal polymers are derived formally from hydroxyacids (97,98) and thein acetates readily undergo self-condensation in the melt, stoichiometric balance being automatically obtained. [Pg.295]

A surpnsing feature of the reactions of hexafluoroacetone, trifluoropyruvates, and their acyl imines is the C-hydroxyalkylation or C-amidoalkylaOon of activated aromatic hydrocarbons or heterocycles even in the presence of unprotected ammo or hydroxyl functions directly attached to the aromatic core Normally, aromatic amines first react reversibly to give N-alkylated products that rearrange thermally to yield C-alkylated products. With aromatic heterocycles, the reaction usually takes place at the site of the maximum n electron density [55] (equaUon 5). [Pg.843]

An interesting class ot covalent Inflates are vin l and ar>/ or heteroaryl Inflates Vinyl inflates are used for the direct solvolytic generation of vinyl cations and for the generation of unsaturated carbenes via the a-elimination process [66] A triflate ester of 2-hydroxypyridine can be used as a catalyst for the acylation of aromatic compounds with carboxylic acids [109] (equation 55)... [Pg.962]

The most notable chemistry of the biscylopen-tadienyls results from the aromaticity of the cyclopentadienyl rings. This is now far too extensively documented to be described in full but an outline of some of its manifestations is in Fig. 25.14. Ferrocene resists catalytic hydrogenation and does not undergo the typical reactions of conjugated dienes, such as the Diels-Alder reaction. Nor are direct nitration and halogenation possible because of oxidation to the ferricinium ion. However, Friedel-Crafts acylation as well as alkylation and metallation reactions, are readily effected. Indeed, electrophilic substitution of ferrocene occurs with such facility compared to, say, benzene (3 x 10 faster) that some explanation is called for. It has been suggested that. [Pg.1109]

Product complex 7 as well as the free product 3 are much less reactive towards further electrophilic substitution as is the starting material thus the formation of polyacylated products is not observed. If the starting material bears one or more non-deactivating substituents, the direction of acylation can be predicted by the general rules for aromatic substitution. [Pg.117]

Many pharmacologically active compounds have been synthesized using 5-bromoisoquinoline or 5-bromo-8-nitroisoquinoline as building blocks.6 7 8 9 10 11 The haloaromatics participate in transition-metal couplings 81012 and Grignard reactions. The readily reduced nitro group of 5-bromo-8-nitroisoquinoline provides access to an aromatic amine, one of the most versatile functional groups. In addition to N-alkylation, TV-acylation and diazotiation, the amine may be utilized to direct electrophiles into the orthoposition. [Pg.52]

As in the case of benzimidazole, a parallel synthesis of benzoxazoles was described. The authors report that mixing directly differently substituted o-amino phenols 193 with acylating agents 194 and heating at 200 °C for 10-15 min under microwave irradiation, a collection of benzoxazoles 195 was obtained (Scheme 70). With this reaction, a 48-member library of benzoxazoles with different substituents on the aromatic rings was obtained [125]. [Pg.249]

Sodium or potassium phenoxide can be carboxylated regioselectively in the para position in high yield by treatment with sodium or potassium carbonate and carbon monoxide. Carbon-14 labeling showed that it is the carbonate carbon that appears in the p-hydroxybenzoic acid product. The CO is converted to sodium or potassium formate. Carbon monoxide has also been used to carboxylate aromatic rings with palladium compoimds as catalysts. In addition, a palladium-catalyzed reaction has been used directly to prepare acyl fluorides ArH —> ArCOF. ... [Pg.718]

N-Substituted amides can be prepared by direct attack of isocyanates on aromatic rings.The R group may be alkyl or aryl, but if the latter, dimers and trimers are also obtained. Isothiocyanates similarly give thioamides. The reaction has been carried out intramolecularly both with aralkyl isothiocyanates and acyl isothiocyanates.In the latter case, the product is easily hydrolyzable to a dicarboxylic acid this is a way of putting a carboxyl group on a ring ortho to one already there (34 is... [Pg.719]

Although acyl imidazoles can be replaced by phenyl esters in some cases,23 acyl imidazoles are more effective for the acylation of nitroalkanes. A combination of diethyl phosphorcyani-dates and triethylamime allows the direct C-acylation of nitromethane by aromatic carboxylic... [Pg.129]

Catalytic amounts of I fCl4-AgC104 and Hf(OTf)4 are used for activation of acid halides and acid anhydrides for Friedel -Crafts acylation (Scheme 42) 178 the reactions of both reactive and unreactive aromatic substrates proceed smoothly in the presence of Hf(OTf)4. Furthermore, the Fries rearrangement179,180 and direct C-acylation of phenolic compounds181,182 take place using Hf(OTf)4. Formation of esters and Mannich-type reactions and allylation of imines have been also reported.152... [Pg.418]

The classical Friedel-Crafts approach toward attaching a phosphorus site directly to an aromatic ring would seem a promising route. Phosphorus-centered acid halides would be anticipated to participate in electrophilic aromatic substitution much in the manner of ordinary acyl halides. Early efforts confirmed this concept.48-52 However, difficulties have been encountered in the use of the classical conditions,53 and modifications to the approach have been necessary. [Pg.172]


See other pages where Aromatics direct acylation is mentioned: [Pg.101]    [Pg.75]    [Pg.101]    [Pg.15]    [Pg.155]    [Pg.299]    [Pg.1126]    [Pg.2200]    [Pg.73]    [Pg.101]    [Pg.243]    [Pg.207]    [Pg.557]    [Pg.374]    [Pg.115]    [Pg.267]    [Pg.580]    [Pg.510]    [Pg.516]    [Pg.700]    [Pg.707]    [Pg.713]    [Pg.735]    [Pg.6]    [Pg.53]    [Pg.754]    [Pg.165]    [Pg.46]    [Pg.242]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Acylation, aromatic

Aromatics acylation

© 2024 chempedia.info