Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic molecules, excited state

The irradiation is usually carried out with light of the near UV region, in order to activate only ihc n n transition of the carbonyl function," thus generating excited carbonyl species. Depending on the substrate, it can be a singlet or triplet excited state. With aromatic carbonyl compounds, the reactive species are usually in a Ti-state, while with aliphatic carbonyl compounds the reactive species are in a Si-state. An excited carbonyl species reacts with a ground state alkene molecule to form an exciplex, from which in turn diradical species can be formed—e.g. 4 and 5 in the following example ... [Pg.221]

In electron donor-acceptor (EDA) complexes, there is always a donor molecule and an acceptor. The donor may donate an unshared pair (an n donor) or a pair of electrons in a ti orbital of a double bond or aromatic system (a it donor). One test for the presence of an EDA complex is the electronic spectrum. These complexes generally exhibit a spectrum (called a charge-transfer spectrum) that is not the same as the sum of the spectra of the two individual molecules. Because the first excited state of the complex is relatively close in energy to the ground state, there is usually a... [Pg.102]

The NIR femtosecond laser microscope realized higher order multi photon excitation for aromatic compounds interferometric autocorrelation detection of the fluorescence from the microcrystals of the aromatic molecules confirmed that their excited states were produced not via stepwise multiphoton absorption but by simultaneous absorption of several photons. The microscope enabled us to obtain three-dimensional multiphoton fluorescence images with higher spatial resolution than that limited by the diffraction theory for one-photon excitation. [Pg.151]

In addition to the previously mentioned disadvantages, all of these methods have another drawback in the large molecule photofragment velocity measurements. For example, in the studies of UV photon photodissociation of polyatomic molecules, like alkene and aromatic molecules, molecules excited by the UV photons quickly become highly vibrationally excited in the ground electronic state through fast internal conversion, and dissociation occurs in the ground electronic state. [Pg.165]

In contrast to aromatic hydrocarbons, heavy-atom substitution onto carbonyl and heterocyclic molecules appears to have little effect on radiative and nonradiative intercombinational transitions. Wagner(138) has shown that as determined by the type II photoelimination, aliphatic ketones (n -> it excited states) are not sensitive to external heavy-atom perturbation. As seen previously in our discussion of type II photoelimination, aliphatic ketones undergo this cleavage from both the excited singlet and triplet states (in... [Pg.435]

Thus we see that in molecules possessing ->- 77 excited states inter-combinational transitions (intersystem crossing, phosphorescence, and non-radiative triplet decay) should be efficient compared to the same processes in aromatic hydrocarbons. This conclusion is consistent with the high phosphorescence efficiencies and low fluorescence efficiencies exhibited by most carbonyl and heterocyclic compounds. [Pg.436]

In complex organic molecules calculations of the geometry of excited states and hence predictions of chemiluminescent reactions are very difficult however, as is well known, in polycyclic aromatic hydrocarbons there are relatively small differences in the configurations of the ground state and the excited state. Moreover, the chemiluminescence produced by the reaction of aromatic hydrocarbon radical anions and radical cations is due to simple one-electron transfer reactions, especially in cases where both radical ions are derived from the same aromatic hydrocarbon, as in the reaction between 9.10-diphenyl anthracene radical cation and anion. More complex are radical ion chemiluminescence reactions involving radical ions of different parent compounds, such as the couple naphthalene radical anion/Wurster s blue (see Section VIII. B.). [Pg.69]

We mentioned in Section III.A that one of the unique features of radical ion optical spectroscopy is that it allows one to measure excited-state energies of a molecule at two different geometries, namely that of the neutral species (If in PE spectra) and that of the relaxed radical cation (Xmax of the EA bands). In many cases this feature is of little relevance because either the geometry changes upon ionization are too small to lead to noticeable effects (e.g. in aromatic hydrocarbons), or because such effects are obscured, due to the invisibility of the states in one or other of the two experiments (i.e. strong cr-ionizations in the PE spectrum) or because of the near-cancellation of opposing effects (as in the case of linear conjugated polyene radical cations). [Pg.250]

Energy transfer quenching. If an impurity is present whose first excited singlet state is below that of the excited state of the analyte then energy can be transferred to the impurity and fluorescence is not seen. This does not have to involve collision and non-radiation transfer can occur. Aromatic molecules are particularly a source of this interference. Removal is an option but sometimes dilution is a solution if the desired fluorescence can still be measured at lower concentration. [Pg.261]

Lochmuller and coworkers used the formation of excimer species to answer a distance between site question related to the organization and distribution of molecules bound to the surface of silica xerogels such as those used for chromatography bound phases. Pyrene is a flat, poly aromatic molecule whose excited state is more pi-acidic than the ground state. An excited state of pyrene that can approach a ground state pyrene within 7A will form an excimer Pyr +Pyr (Pyr)2. Monomer pyrene emits at a wavelength shorter than the excimer and so isolated versus near-neighbor estimates can be made. In order to do this quantitatively, these researchers turned to measure lifetime because the monomer and excimer are known to have different lifetimes in solution. This is also a way to introduce the concept of excited state lifetime. [Pg.262]

Resonance energy transfer between the aromatic amino acids proceeds by very weak coupling between the donor and acceptor.151,52) Very weak coupling implies that the interaction between the donor and acceptor wave functions is small enough so as not to perturb measurably the individual molecular spectra. This transfer process, which is distinct from the trivial process of absorption of an emitted photon, involves radiationless deexcitation of an excited-state donor molecule with concomitant excitation of a ground-... [Pg.13]

Pople, J. A. The electronic spectra of aromatic molecules. II A theoretical treatment of excited states of alternant hydrocarbon molecules based on self-consistent molecular orbitals. Proc. Phys. Soc. (London) A 68, 81—89 (1955). [Pg.44]

Using this technique, Novak and Windsor were able to measure the absorption spectra of several excited aromatic molecules. The observed transitions started from the first excited singlet state S to higher lying states S The authors could also observe... [Pg.36]


See other pages where Aromatic molecules, excited state is mentioned: [Pg.2616]    [Pg.270]    [Pg.133]    [Pg.753]    [Pg.212]    [Pg.89]    [Pg.11]    [Pg.402]    [Pg.33]    [Pg.294]    [Pg.318]    [Pg.192]    [Pg.213]    [Pg.220]    [Pg.400]    [Pg.21]    [Pg.35]    [Pg.53]    [Pg.63]    [Pg.73]    [Pg.140]    [Pg.228]    [Pg.297]    [Pg.295]    [Pg.139]    [Pg.206]    [Pg.117]    [Pg.5]    [Pg.7]    [Pg.65]    [Pg.66]    [Pg.85]    [Pg.119]    [Pg.269]    [Pg.135]    [Pg.24]    [Pg.272]   


SEARCH



Aromatic excited states

Aromatic molecules

Aromatic molecules, excited state intramolecular proton transfer

Aromaticity excited states

Excited molecules

Molecules excitation

© 2024 chempedia.info