Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic hydrogen donors

Upon heating the enediyne la rearranges reversibly to the 1,4-benzenediyl diradical 2a, which in its turn can rearrange to the enediyne lb or—in the presence of a hydrogen donor (e.g. cyclohexa-1,4-diene)—react to the aromatic compound 3a. [Pg.39]

In the reaction of naphthenes with olefins, naphthenic compounds are hydrogen donors. They can react with olefins to produce paraffins and aromatics (Equation 4-12). [Pg.134]

Aldehydes, both aliphatic and aromatic, can be decarbonylated by heating with chlorotris(triphenylphosphine)rhodium or other catalysts such as palladium. The compound RhCl(Ph3P)3 is often called Wilkinson s catalyst.In an older reaction, aliphatic (but not aromatic) aldehydes are decarbonylated by heating with di-tert-peroxide or other peroxides, usually in a solution containing a hydrogen donor, such as a thiol. The reaction has also been initiated with light, and thermally (without an initiator) by heating at 500°C. [Pg.944]

The dimerization of ketones to 1,2-diols can also be accomplished photochemi-cally indeed, this is one of the most common photochemical reactions. The substrate, which is usually a diaryl or aryl alkyl ketone (though a few aromatic aldehydes and dialkyl ketones have been dimerized), is irradiated with UV light in the presence of a hydrogen donor such as isopropyl alcohol, toluene, or an amine. In the case of benzophenone, irradiated in the presence of 2-propanol, the ketone molecule initially undergoes n — k excitation, and the singlet species thus formed crosses to the T, state with a very high efficiency. [Pg.1560]

On the other hand, one of the first chiral sulfur-containing ligands employed in the asymmetric transfer hydrogenation of ketones was introduced by Noyori el al Thus, the use of A-tosyl-l,2-diphenylethylenediamine (TsDPEN) in combination with ruthenium for the reduction of various aromatic ketones in the presence of i-PrOH as the hydrogen donor, allowed the corresponding alcohols to be obtained in both excellent yields and enantioselectivities, as... [Pg.279]

Aromatic diazo compounds can be reduced in water via a radical process (Scheme 11.5).108 The reduction mechanism of arenediazo-nium salts by hydroquinone was studied in detail.109 Arenediazonium tetrafluoroborate salts undergo facile electron-transfer reactions with hydroquinone in aqueous phosphate-buffered solution containing the hydrogen donor solvent acetonitrile. Reaction rates are first order in a... [Pg.362]

Benzophenone has also been found to be photoreduced in the presence of amines as hydrogen donors, although less efficiently than in the presence of benzhydrol or isopropyl alcohol. The photoreduction of ketones in aromatic amines is thought not to go by the same mechanism as the photoreduction in alcohols, for the following reasons ... [Pg.60]

Several studies have been performed on the photodecomposition of diaryl sulfones and polysulfones Khodair, et. al., (21) demonstrated that the photodecomposition of diaryl sulfones proceeds by a free-radical mechanism with initial carbon-sulfur bond cleavage. This gives an aryl radical and an aromatic sulfonyl radical. The latter radical can react with oxygen and a hydrogen donor to eventually form the hydroxyl radical. The hydroxy radical may attack the aromatic nucleus in PET and forms the hydroxyterephthaloyl radical. [Pg.259]

A schematic diagram of the liquid solvent extraction process is illustrated in Figure 1. Where the production of liquid hydrocarbons is the main objective an hydrogenated donor process solvent is used, whereas in the production of needle coke this is not necessary and a coal derived high boiling aromatic solvent may be used (e.g. anthracene oil). An essential economic requirement of the process is that a high extraction yield of the coal is obtained and this will depend upon the coal used and the digestion conditions. [Pg.115]

Hydrogen donors are, however, not the only important components of solvents in short contact time reactions. We have shown (4,7,16) that condensed aromatic hydrocarbons also promote coal conversion. Figure 18 shows the results of a series of conversions of West Kentucky 9,14 coal in a variety of process-derived solvents, all of which contained only small amounts of hydroaromatic hydrocarbons. The concentration of di- and polyaromatic ring structures were obtained by a liquid chromatographic technique (4c). It is interesting to note that a number of these process-derived solvents were as effective or were more effective than a synthetic solvent which contained 40% tetralin. The balance between the concentration of H-donors and condensed aromatic hydrocarbons may be an important criterion in adjusting solvent effectiveness at short times. [Pg.160]

Kleinpeter and Burke have recently reported (24) that solvents can also be over hydrogenated and thus become less effective in short time processes. Figure 19 shows some of their work in which a process-derived SRC recycle solvent was hydrogenated to various severities and used for the conversion of an Indian V bituminous coal. The results clearly show a maximum at intermediate hydrogenation severities. Our assessment of this observation is that the loss in conversion was due primarily to the loss in condensed aromatic nucleii rather than conversion of hydrogen donors to saturates. [Pg.160]

To illustrate how this applies in the present circumstances we consider a passible group transfer reaction between A2 dihydro-naphthalene, (gQ) > a hydrogen donor, and phenanthrene,(g gr > a substrate (hydrogen acceptor) which models a polynuclear aromatic moiety commonly found in coal. In the overall group transfer reaction ... [Pg.323]

Mechanism X Inhibitor Reacts with R02 and Radical In Reacts with Dioxygen Inhibitors such as diatomic phenols (hydroquinone, pyrocatechol), aminophenols, and aromatic diamines produce phenoxyl and aminyl radicals, which are efficient hydrogen donors rapidly reacting with dioxygen [56], for example,... [Pg.497]

Chemical catalysts for transfer hydrogenation have been known for many decades [2e]. The most commonly used are heterogeneous catalysts such as Pd/C, or Raney Ni, which are able to mediate for example the reduction of alkenes by dehydrogenation of an alkane present in high concentration. Cyclohexene, cyclo-hexadiene and dihydronaphthalene are commonly used as hydrogen donors since the byproducts are aromatic and therefore more difficult to reduce. The heterogeneous reaction is useful for simple non-chiral reductions, but attempts at the enantioselective reaction have failed because the mechanism seems to occur via a radical (two-proton and two-electron) mechanism that makes it unsuitable for enantioselective reactions [2 c]. [Pg.1216]

The catalysts are best prepared in situ by mixing a half-equivalent of the di-chloro-metal aromatic dimer with an equivalent of the ligand in a suitable solvent such as acetonitrile, dichloromethane or isopropanol. A base is used to remove the hydrochloric acid formed (Fig. 35.3). If 1 equiv. of base is used, the inactive pre-catalyst is prepared, and further addition of base activates the catalyst to the 16-electron species. In the IPA system the base is conveniently aqueous sodium hydroxide or sodium isopropoxide in isopropanol, whereas in the TEAF system, triethylamine activates the catalyst. In practice, since the amount of catalyst is tiny, any residual acid in the solvent can neutralize the added base, so a small excess is often used. To prevent the active 16-electron species sitting around, the catalyst is often activated in the presence of the hydrogen donor. The amount of catalyst required for a transformation depends on the desired reaction rate. Typically, it is desirable to achieve complete conversion of the substrate within several hours, and to this extent the catalyst is often used at 0.1 mol.% (with SCR 1000 1). Some substrate-catalyst combinations are less active, requiring more catalyst (e.g., up to 1 mol.% SCR 100 1), in other reactions catalyst TONs of 10000 (SCR 10000 1) have been realized. [Pg.1222]


See other pages where Aromatic hydrogen donors is mentioned: [Pg.161]    [Pg.895]    [Pg.895]    [Pg.502]    [Pg.895]    [Pg.161]    [Pg.895]    [Pg.895]    [Pg.502]    [Pg.895]    [Pg.412]    [Pg.1453]    [Pg.137]    [Pg.300]    [Pg.228]    [Pg.96]    [Pg.279]    [Pg.282]    [Pg.284]    [Pg.216]    [Pg.500]    [Pg.193]    [Pg.199]    [Pg.254]    [Pg.321]    [Pg.322]    [Pg.328]    [Pg.382]    [Pg.153]    [Pg.155]    [Pg.176]    [Pg.215]    [Pg.383]    [Pg.434]    [Pg.531]    [Pg.59]    [Pg.71]    [Pg.480]   
See also in sourсe #XX -- [ Pg.8 , Pg.557 ]

See also in sourсe #XX -- [ Pg.8 , Pg.557 ]




SEARCH



Aromatic hydrogen

Aromatic hydrogenation

Aromatics hydrogenation

Donor hydrogenation

Hydrogen aromaticity

Hydrogenated aromatics

Hydrogenation hydrogen donors

© 2024 chempedia.info