Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compound ionization

It has already been noted that, as well as alkylbenzenes, a wide range of other aromatic compounds has been nitrated with nitronium salts. In particular the case of nitrobenzene has been examined kinetically. Results are collected in table 4.4. The reaction was kinetically of the first order in the concentration of the aromatic and of the nitronium salt. There is agreement between the results for those cases in which the solvent induces the ionization of nitric acid to nitronium ion, and the corresponding results for solutions of preformed nitronium salts in the same solvent. [Pg.68]

The best-known equation of the type mentioned is, of course, Hammett s equation. It correlates, with considerable precision, rate and equilibrium constants for a large number of reactions occurring in the side chains of m- and p-substituted aromatic compounds, but fails badly for electrophilic substitution into the aromatic ring (except at wi-positions) and for certain reactions in side chains in which there is considerable mesomeric interaction between the side chain and the ring during the course of reaction. This failure arises because Hammett s original model reaction (the ionization of substituted benzoic acids) does not take account of the direct resonance interactions between a substituent and the site of reaction. This sort of interaction in the electrophilic substitutions of anisole is depicted in the following resonance structures, which show the transition state to be stabilized by direct resonance with the substituent ... [Pg.137]

Charge-Transfer Compounds. Similat to iodine and chlorine, bromine can form charge-transfer complexes with organic molecules that can serve as Lewis bases. The frequency of the iatense uv charge-transfer adsorption band is dependent on the ionization potential of the donor solvent molecule. Electronic charge can be transferred from a TT-electron system as ia the case of aromatic compounds or from lone-pairs of electrons as ia ethers and amines. [Pg.284]

Aromatic compounds may be chlorinated with chlorine in the presence of a catalyst such as iron, ferric chloride, or other Lewis acids. The halogenation reaction involves electrophilic displacement of the aromatic hydrogen by halogen. Introduction of a second chlorine atom into the monochloro aromatic stmcture leads to ortho and para substitution. The presence of a Lewis acid favors polarization of the chlorine molecule, thereby increasing its electrophilic character. Because the polarization does not lead to complete ionization, the reaction should be represented as shown in equation 26. [Pg.510]

The classic example, and still the most useful one, of a LFER is the Hammett equation, which correlates rates and equilibria of many side-chain reactions of meta- and para-substituted aromatic compounds. The standard reaction is the aqueous ionization equilibrium at 25°C of meta- and para-substituted benzoic acids. [Pg.315]

IV, C, 1, d). Second, for both classes of aromatic compounds such values show a surprisingly small dependence on the nature of the attacking reagent, probably indicating the predominant role of the reorganization of the substrate toward a new state represented by structure 63 or 65. FinaUy, it may not be fortuitous that a correspondence is found between structural effects on substitution rates and on ionization constants (Section IV,C, l,a). Bond-making would in fact be the essential analogy between these phenomena [Eqs. (16) and (17)], and... [Pg.355]

One example of normal-phase liquid chromatography coupled to gas chromatography is the determination of alkylated, oxygenated and nitrated polycyclic aromatic compounds (PACs) in urban air particulate extracts (97). Since such extracts are very complex, LC-GC is the best possible separation technique. A quartz microfibre filter retains the particulate material and supercritical fluid extraction (SPE) with CO2 and a toluene modifier extracts the organic components from the dust particles. The final extract is then dissolved in -hexane and analysed by NPLC. The transfer at 100 p.1 min of different fractions to the GC system by an on-column interface enabled many PACs to be detected by an ion-trap detector. A flame ionization detector (PID) and a 350 p.1 loop interface was used to quantify the identified compounds. The experimental conditions employed are shown in Table 13.2. [Pg.362]

Aromatic compounds, 344 Arrhenius, Svante, 198 Arsenic, ionization energy, 410 Asbestos, 310 Aspirin, 346 Astatine... [Pg.455]

An abundant molecular ion may indicate that an aromatic compound or highly unsaturated ring compound is present. If no molecular ion is observed and one cannot be deduced, the use of chemical ionization (ci), negative chemical ionization (nci), fast atom bombardment (FAB), or electrospray ionization (ESI) should provide a molecular ion. [Pg.20]

One of the most commonly studied systems involves the adsorption of polynuclear aromatic compounds on amorphous or certain crystalline silica-alumina catalysts. The aromatic compounds such as anthracene, perylene, and naphthalene are characterized by low ionization potentials, and upon adsorption they form paramagnetic species which are generally attributed to the appropriate cation radical (69, 70). An analysis of the well-resolved spectrum of perylene on silica-alumina shows that the proton hyperfine coupling constants are shifted by about four percent from the corresponding values obtained when the radical cation is prepared in H2SO4 (71). The linewidth and symmetry require that the motion is appreciable and that the correlation times are comparable to those found in solution. [Pg.301]

As the reaction temperature is increased, chemiluminescence is observed in the reactions of ozone with aromatic hydrocarbons and even alkanes. Variation of temperature has been used to control the selectivity in a gas chromatography (GC) detector [35], At room temperature, only olefins are detected at a temperature of 150°C, aromatic compounds begin to exhibit a chemiluminescent response and at 250°C alkanes respond, giving the detector a nearly universal response similar to a flame ionization detector (FID). The mechanisms of these reactions are complex and unknown. However, it seems likely that oxygen atoms produced in the thermal decomposition of ozone may play a significant role, as may surface reactions with 03 and O atoms. [Pg.359]

The relaxation effects of the cation are throughout rather small, of the order of 2-10 kcal mol-1. The reason for this is that most aromatic compounds retain their planarity on ionization, and thus structural reorganizations are small. Similar observa-... [Pg.145]

Soma et al. (12) have generalized the trends for aromatic compound polymerization as follows (1) aromatic compounds with ionization potentials lower than approximately 9.7 eV formg radical cations upon adsorption in the interlayer of transition-metal ion-exchanged montmorillonites, (2) parasubstituted benzenes and biphenyls are sorbed as the radical cations and prevented from coupling reactions due to blockage of the para position, (3) monosubstituted benzenes react to 4,4 -substituted biphenyls which are stably sorbed, (4) benzene, biphenyl, and p-terphenyl polymerized, and (5) biphenyl methane, naphthalene, and anthracene are nonreactive due to hindered access to reaction sites. However, they observed a number of exceptions that did not fit this scheme and these were not explained. [Pg.471]

The sites of protonation of aromatic compounds, including the possible three mono fluoronitrobenzenes, have been studied by neutralization-reionization mass spectrometry (NRMS)22. The NRMS experiments on the MD+ species generated by D2 chemical ionization clearly indicated that the D+ attachment takes place to the nitro group rather than to the aromatic ring, as evidenced by the abundant losses of OD and DNO2 (NO + OD )22. [Pg.288]

The exchange of a considerable number of linear, branched-chain, and cyclic alkanes have been studied (5i). The exchange rate increases with increase in the carbon chain length forn-alkanes (methane to hexane). It is found that there is a linear correlation between the logarithm of the exchange rate and the ionization potential of the alkane (Fig. 5 n-alkanes are plotted as circles). This correlation extends to aromatic compounds (Fig. 5 aromatic compounds are plotted as squares) and is evidence that alkanes and aromatic compounds react by a common mechanism. Indeed, the least reactive aromatic, benzene, is only about... [Pg.172]

Fig. 5. Rate of H—D exchange versus ionization potential of alkanes and aromatic compounds 1 = methane 2 = ethane 3 = propane 4 = n-butane 5 = n-pentane 6 = n-hexane 7 = cyclopentane 8 = cyclohexane 9 = benzene 10 = naphthalene 11 = phenanthrene 12 = 2,2-dimethylbutane (see text) 13 = 1,1-dimethylpropy I benzene (see text) 14 = 2-methylpropane 15 = 2-methylbutane 16 = 2,2-dimethylpropane 17 = 2-methylpentane 18 = 3-methylpentane 19 = 2,3-dimethylbutane 20 = 2,2-dimethylbutane. Fig. 5. Rate of H—D exchange versus ionization potential of alkanes and aromatic compounds 1 = methane 2 = ethane 3 = propane 4 = n-butane 5 = n-pentane 6 = n-hexane 7 = cyclopentane 8 = cyclohexane 9 = benzene 10 = naphthalene 11 = phenanthrene 12 = 2,2-dimethylbutane (see text) 13 = 1,1-dimethylpropy I benzene (see text) 14 = 2-methylpropane 15 = 2-methylbutane 16 = 2,2-dimethylpropane 17 = 2-methylpentane 18 = 3-methylpentane 19 = 2,3-dimethylbutane 20 = 2,2-dimethylbutane.
Ionization Potentials of Aromatic Compounds, Obtained by Photoionization... [Pg.419]


See other pages where Aromatic compound ionization is mentioned: [Pg.413]    [Pg.413]    [Pg.26]    [Pg.62]    [Pg.96]    [Pg.140]    [Pg.314]    [Pg.79]    [Pg.199]    [Pg.403]    [Pg.225]    [Pg.17]    [Pg.149]    [Pg.809]    [Pg.56]    [Pg.275]    [Pg.35]    [Pg.231]    [Pg.7]    [Pg.228]    [Pg.60]    [Pg.269]    [Pg.263]    [Pg.258]    [Pg.231]    [Pg.132]    [Pg.253]    [Pg.112]    [Pg.79]    [Pg.244]    [Pg.377]    [Pg.381]   


SEARCH



Ionizable compounds

© 2024 chempedia.info