Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Argon, and

Deitz and Carpenter [176] found that argon and nitrogen adsorbed only... [Pg.661]

Figure Bl.26.4. The adsorption of argon and krypton on graphitized carbon black at 77 K (Eggers D F Jr, Gregory N W, Halsey G D Jr and Rabinovitch B S 1964 Physical Chemistry (New York Wiley) eh 18). Figure Bl.26.4. The adsorption of argon and krypton on graphitized carbon black at 77 K (Eggers D F Jr, Gregory N W, Halsey G D Jr and Rabinovitch B S 1964 Physical Chemistry (New York Wiley) eh 18).
Ross M 1968 Shock compression of argon and xenon. IV. Oonversion of xenon to a metal-like state Phys. Rev. 171 777... [Pg.1962]

Bromo-3-iodo-l-(4-methylphenylsulfonyl)indole (0.476 g, 1.00 mmol), methyl acrylate (0.108 g, 1.25 mmol), EtjN (0.127 g, 1.25 mmol) and Pd(OAc)2 (11 mg, 0.050 mmol) were mixed in a tube, purged with argon and the tube was sealed and heated to 100°C for 1 h. After cooling, it was opened and mixed with CH2CI2 (50 ml). The solution was washed with water and dried (Na SOJ. The residue was purified by chromatography on silica using 1 3 benzene-hexane for elution. The yield was 0.350 g (81%). [Pg.112]

Fig. 3.2 Adsorption isotherms for argon and nitrogen at 78 K and for n-butane at 273 K on porous glass No. 3. Open symbols, adsorption solid symbols, desorption (courtesy Emmett and Cines). The uptake at saturation (calculate as volume of liquid) was as follows argon at 78 K, 00452 nitrogen at 78 K, 00455 butane at 273 K, 00434cm g . Fig. 3.2 Adsorption isotherms for argon and nitrogen at 78 K and for n-butane at 273 K on porous glass No. 3. Open symbols, adsorption solid symbols, desorption (courtesy Emmett and Cines). The uptake at saturation (calculate as volume of liquid) was as follows argon at 78 K, 00452 nitrogen at 78 K, 00455 butane at 273 K, 00434cm g .
A gun is used to direct a beam of fast-moving atoms or ions onto the liquid target (matrix). Figure 4.1 shows details of the operation of an atom gun. An inert gas is normally used for bombardment because it does not produce unwanted secondary species in the primary beam and avoids contaminating the gun and mass spectrometer. Helium, argon, and xenon have been used commonly, but the higher mass atoms are preferred for maximum yield of secondary ions. [Pg.18]

In the cross-flow arrangement, the argon gas flows at high linear velocity across the face of an orthogonal capillary tube containing sample solution. The partial vacuum causes liquid to lift above the end of the capillary. Here, it meets the argon and is nebulized. [Pg.144]

A discharge ignited in argon and coupled inductively to an external high-frequency electromagnetic field produces a plasma of ions, neutrals, and electrons with a temperature of about 7000 to 10,000°C. Samples introduced into the plasma under these extremely energetic conditions are fragmented into atoms and ions of their constituent elements. These ions are examined by a mass analyzer, frequently a quadrupole instrument. [Pg.395]

Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted. Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted.
On the high-pressure side of the nozzle molecules may be seeded into the jet of helium or argon and are also cooled by the many collisions that take place. However, in discussing temperature in molecules, we must distinguish between translational, rotational and vibrational temperatures. The translational temperature is the same as that of the helium or argon carrier gas and may be less than 1 K. [Pg.396]

The extremely nonpolar character of PFCs and very low forces of attraction between PFC molecules account for their special properties. Perfluorocarbons bod only slightly higher than noble gases of similar molecular weight, and their solvent properties are much more like those of argon and krypton than hydrocarbons (2). The physical properties of some PFCs are Hsted in Table 1. [Pg.282]

For distributing larger quantities of gaseous helium, argon, and occasionally neon, a number of large, horizontal, compressed gas cylinders are manifolded on tmck semitrailers (called tube trailers) or railroad cars. Like individual cylinders, these serve both as transport containers and rental storage containers. Capacities of tube trailers range from about 300 to 5,000 m (10,000—175,000 fT) of gas. [Pg.12]

In a vacuum, uncoated molybdenum metal has an unlimited life at high temperatures. This is also tme under the vacuum-like conditions of outer space. Pure hydrogen, argon, and hehum atmospheres are completely inert to molybdenum at all temperatures, whereas water vapor, sulfur dioxide, and nitrous and nitric oxides have an oxidizing action at elevated temperatures. Molybdenum is relatively inert to carbon dioxide, ammonia, and nitrogen atmospheres up to about 1100°C a superficial nitride film may be formed at higher temperatures in the latter two gases. Hydrocarbons and carbon monoxide may carburize molybdenum at temperatures above 1100°C. [Pg.465]

Mass spectral analysis of quaternary ammonium compounds can be achieved by fast-atom bombardment (fab) ms (189,190). This technique rehes on bombarding a solution of the molecule, usually in glycerol [56-81-5] or y -nitroben2yl alcohol [619-25-0], with argon and detecting the parent cation plus a proton (MH ). A more recent technique has been reported (191), in which information on the stmcture of the quaternary compounds is obtained indirectly through cluster-ion formation detected via Hquid secondary ion mass spectrometry (Isims) experiments. [Pg.378]

Owing to the light and air sensitivity of the carotenoids and retinoids, sample handling is a critical issue. It is recommended to conduct extraction of these materials with peroxide-free solvents, to store biological samples at —70° C under argon and in the dark, to perform the analysis under yellow light, and to use reference compounds of high purity (57). [Pg.102]


See other pages where Argon, and is mentioned: [Pg.109]    [Pg.1331]    [Pg.1466]    [Pg.2931]    [Pg.3]    [Pg.406]    [Pg.100]    [Pg.12]    [Pg.75]    [Pg.84]    [Pg.86]    [Pg.92]    [Pg.29]    [Pg.101]    [Pg.278]    [Pg.355]    [Pg.89]    [Pg.89]    [Pg.342]    [Pg.42]    [Pg.11]    [Pg.11]    [Pg.12]    [Pg.15]    [Pg.15]    [Pg.25]    [Pg.201]    [Pg.382]    [Pg.76]    [Pg.204]    [Pg.480]    [Pg.290]    [Pg.339]    [Pg.350]    [Pg.418]    [Pg.472]   
See also in sourсe #XX -- [ Pg.2 , Pg.229 ]




SEARCH



Argon and potassium chloride

Argon diffusion (and its use to determine thermal histories)

Compounds of argon, krypton and radon

Isotherms of nitrogen and argon

Neon and argon isotope systematics of arc-related volcanism

Neutral Compounds of Helium, Neon, and Argon

Nitrogen and argon

Noble Gases Argon Ar, Helium He, Krypton Kr, Neon Ne, and Xenon Xe

Polyatomic Ions of Helium, Neon, and Argon

Recovery of Nitrogen, Oxygen and Argon

Viscosity argon, liquid and gas

© 2024 chempedia.info