Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface analysis applications

Industrial/technical applications Surface analysis Si-wafer surfaces, GaAs-wafer... [Pg.1311]

Ion Scattering Spectroscopy (ISS) is one of the most powerful and practical methods of surface analysis available. However, it is undemtilized due to a lack of understanding about its application and capabilities. This stems from its history, the limited number of high-performance instmments manufactured, and the small number of experienced surface scientists who have actually used ISS in extensive applications. Ironically, it is one of the easiest and most convenient sur ce analytical instruments to use and it provides usehil information for almost any type of solid material. [Pg.514]

The most useful application of ISS is in the detection and identification of sur-fece contamination, which is one of the major causes of product failures and problems in product development. The surface composition of a solid material is almost always different than its bulk. Therefore, surface chemistry is usually the study of unknown surfaces of solid materials. To better understand the concept of surface analysis, which is used very loosely among many scientists, we must first establish a definition for that term. This is particularly Important when considering ISS... [Pg.514]

Although SIMS is one of the most powerful surface analysis techniques, its application is complicated by a variety of artifacts. [Pg.541]

XPS has been used in almost every area in which the properties of surfaces are important. The most prominent areas can be deduced from conferences on surface analysis, especially from ECASIA, which is held every two years. These areas are adhesion, biomaterials, catalysis, ceramics and glasses, corrosion, environmental problems, magnetic materials, metals, micro- and optoelectronics, nanomaterials, polymers and composite materials, superconductors, thin films and coatings, and tribology and wear. The contributions to these conferences are also representative of actual surface-analytical problems and studies [2.33 a,b]. A few examples from the areas mentioned above are given below more comprehensive discussions of the applications of XPS are given elsewhere [1.1,1.3-1.9, 2.34—2.39]. [Pg.23]

Like XPS, the application of AES has been very widespread, particularly in the earlier years of its existence more recently, the technique has been applied increasingly to those problem areas that need the high spatial resolution that AES can provide and XPS, currently, cannot. Because data acquisition in AES is faster than in XPS, it is also employed widely in routine quality control by surface analysis of random samples from production lines of for example, integrated circuits. In the semiconductor industry, in particular, SIMS is a competing method. Note that AES and XPS on the one hand and SIMS/SNMS on the other, both in depth-profiling mode, are complementary, the former gaining signal from the sputter-modified surface and the latter from the flux of sputtered particles. [Pg.42]

Initial results prove the high potential of LA-based hyphenated techniques for depth profiling of coatings and multilayer samples. These techniques can be used as complementary methods to other surface-analysis techniques. Probably the most reasonable application of laser ablation for depth profiling would be the range from a few tens of nanometers to a few tens of microns, a range which is difficult to analyze by other techniques, e. g. SIMS, SNMS,TXRE, GD-OES-MS, etc. The lateral and depth resolution of LA can both be improved by use of femtosecond lasers. [Pg.240]

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

Table 8 shows results obtained from the application of various bulk and surface analysis methods to lithium metal at rest or after cyclization experiments, as well as at inert and carbon electrodes after cathodic polarization. The analytical methods include elemental analysis, X-ray photoelectron spectroscopy (XPS or ESCA), energy-dispersive analysis of X-rays (X-ray mi-... [Pg.481]

Further structural information is available from physical methods of surface analysis such as scanning electron microscopy (SEM), X-ray photoelectron or Auger electron spectroscopy (XPS), or secondary-ion mass spectrometry (SIMS), and transmission or reflectance IR and UV/VIS spectroscopy. The application of both electroanalytical and surface spectroscopic methods has been thoroughly reviewed and appropriate methods are given in most of the references of this chapter. [Pg.60]

Application of Surface Analysis Techniques in the Study of Catalyst Systems... [Pg.37]

Capacitance and surface tension measurements have provided a wealth of data about the adsorption of ions and molecules at electrified liquid-liquid interfaces. In order to reach an understanding on the molecular level, suitable microscopic models have had to be considered. Interpretation of the capacitance measurements has been often complicated by various instrumental artifacts. Nevertheless, the results of both experimental approaches represent the reference basis for the application of other techniques of surface analysis. [Pg.439]

Barr, T.L. (1990) In Applications of electron spectroscopy to Heterogeneous Catalysis in Briggs, D. and Seah, M.P. (eds.) Practical Surface Analysis, 2nd edn., John Wiley Sons, Chichester, England. [Pg.38]

X-ray probes for surface analysis are used in X-ray photoelectron spectroscopy (XPS), and examples are given of a wide range of applications of this technique in materials science. [Pg.229]

Infrared and ultraviolet probes for surface analysis are then considered.The applications of IR spectroscopy and Raman microscopy are discussed, and a brief account is also given of laser-microprobe mass spectrometry (LAMMA). [Pg.229]

High resolution analytical electron microscopy (HRAEM) is not confined to surface analysis, and applications of this as well Auger (AES) and electron energy loss (EELS) spectroscopies are described. [Pg.229]


See other pages where Surface analysis applications is mentioned: [Pg.515]    [Pg.4595]    [Pg.515]    [Pg.4595]    [Pg.1307]    [Pg.1892]    [Pg.451]    [Pg.282]    [Pg.368]    [Pg.524]    [Pg.716]    [Pg.159]    [Pg.231]    [Pg.256]    [Pg.348]    [Pg.314]    [Pg.426]    [Pg.969]    [Pg.577]    [Pg.366]    [Pg.367]    [Pg.367]    [Pg.368]    [Pg.374]    [Pg.218]    [Pg.33]    [Pg.81]    [Pg.595]    [Pg.509]    [Pg.520]    [Pg.106]    [Pg.19]    [Pg.31]    [Pg.128]    [Pg.177]   


SEARCH



Analysis, applications

Application surface

Applications of Response Surface Techniques to Uncertainty Analysis in Gas Kinetic Models

Applications, surface analysis nuclear industry

Computational Analysis of Wetting on Hydrophobic Surfaces Application to Self-Cleaning Mechanisms

Fields of Application in Trace, Ultratrace and Surface Analysis

Surface analysis

© 2024 chempedia.info