Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Applications interface phenomena

Electrochemical microsystem technology can be scaled down from macroscopic science to micro and further to nanoscale through EMST to ENT [1]. In ENT, electrochemistry involves in the production process to realize nanoproducts and systems which must have reproducible capability. The size of the products and systems must be in the submicron range. It considers electrochemical process for nanostructures formation by deposition, dissolution and modification. Electrochemical reactions combining ion transfer reactions (ITR) and electron transfer reactions (ETR) as applicable in EMST are also applied in ENT. Molecular motions play an important role in ENT as compared with EMST. Hence, mechanical driven system has to be changed to piezo-driven system to achieve nanoscale motions in ENT. Due to the molecular dimension of ENT, quantum effects are always present which is not important in the case of EMST. The double layer acts as an interface phenomenon between electrode and electrolyte in EMST, however, double layer in the order of few nanometers even in dilute electrolyte interferes with the nanostmcture in ENT. [Pg.242]

Adsorption — An important physico-chemical phenomenon used in treatment of hazardous wastes or in predicting the behavior of hazardous materials in natural systems is adsorption. Adsorption is the concentration or accumulation of substances at a surface or interface between media. Hazardous materials are often removed from water or air by adsorption onto activated carbon. Adsorption of organic hazardous materials onto soils or sediments is an important factor affecting their mobility in the environment. Adsorption may be predicted by use of a number of equations most commonly relating the concentration of a chemical at the surface or interface to the concentration in air or in solution, at equilibrium. These equations may be solved graphically using laboratory data to plot "isotherms." The most common application of adsorption is for the removal of organic compounds from water by activated carbon. [Pg.163]

The several industrial applications reported in the hterature prove that the energy of supersonic flow can be successfully used as a tool to enhance the interfacial contacting and intensify mass transfer processes in multiphase reactor systems. However, more interest from academia and more generic research activities are needed in this fleld, in order to gain a deeper understanding of the interface creation under the supersonic wave conditions, to create rehable mathematical models of this phenomenon and to develop scale-up methodology for industrial devices. [Pg.300]

The adsorption of soluble polymers at solid-liquid interfaces is a highly complex phenomenon with vast numbers of possible configurations of the molecules at the surface. Previous analyses of polymer adsorption have ranged in sophistication from very simple applications of "standard" models derived for small molecules, to detailed statistical mechanical treatments of the process. [Pg.23]

Fortunately, in favorable cases enhancement mechanisms operate which increase the signal from the interface by a factor of 105 — 106, so that spectra of good quality can be observed - hence the name surface-enhanced Raman spectroscopy (SERS). However, these mechanisms seem to operate only on metals with broad free-electron-like bands, in particular on the sp metals copper, silver and gold. Furthermore, the electrodes must be roughened on a microscopic scale. These conditions severely limit the applicability of Raman spectroscopy to electrochemical interfaces. Nevertheless, SERS is a fascinating phenomenon, and though not universally applicable, it can yield valuable information on many interesting systems, and its usefulness is expected to increase as instrumentation and preparation techniques improve. [Pg.200]

Silica gel is a polar material. The presence of silanol groups is responsible for the acidic catalytic effect of this material (the pK of Si OH is comparable to that of phenol). The mode of action of silica gel is based on adsorption (Fig. 3.9), a phenomenon that leads to the accumulation of a compound at the interface between the stationary and mobile phases. In the simplest case, a monolayer is formed (known as a Langmuir isotherm) but there is also some attraction and interaction between molecules that are already adsorbed and those still in solution. This contributes to the asymmetry of the elution profile. Although it demonstrates good resolution and a high adsorption capacity, bare silica gel is seldom used for analytical purposes. For most applications, it must be deactivated by partial rehydration (in 3-8% water). [Pg.53]

Because of the short lifetime of ions in gaseous atmospheres, even at low pressure, gas-phase IR measurements are limited to adsorption of neutral molecules. Electrochemical applications of the IR method offer the interesting possibility of providing data on the adsorption properties of charged particles (Secs. 8 and 9). In the electrochemical environment the applied potential allows ionic adsorbates to be studied under energetically controllable conditions. Otherwise the electrochemical double layer offers exceptional conditions to investigate the Stark effect on vibrational transitions by setting tunable electric fields of the order of 10 V cm at the interface. This phenomenon will be discussed in Sec. 10. [Pg.145]

The Stark effect requires the application of electric fields of the order of 10 Vcm or higher. The electrochemical interface, where molecules and ions are subjected to fields in the order of 10 Vcm S seems to be the ideal place to study this phenomenon. [Pg.199]


See other pages where Applications interface phenomena is mentioned: [Pg.16]    [Pg.12]    [Pg.211]    [Pg.741]    [Pg.983]    [Pg.894]    [Pg.213]    [Pg.192]    [Pg.6]    [Pg.247]    [Pg.504]    [Pg.71]    [Pg.193]    [Pg.455]    [Pg.11]    [Pg.17]    [Pg.74]    [Pg.191]    [Pg.229]    [Pg.142]    [Pg.1485]    [Pg.1581]    [Pg.619]    [Pg.251]    [Pg.136]    [Pg.31]    [Pg.199]    [Pg.192]    [Pg.90]    [Pg.102]    [Pg.255]    [Pg.457]    [Pg.119]    [Pg.11]    [Pg.118]    [Pg.117]    [Pg.155]    [Pg.167]    [Pg.172]    [Pg.107]    [Pg.253]    [Pg.521]    [Pg.246]   
See also in sourсe #XX -- [ Pg.2 , Pg.75 ]




SEARCH



Application interfaces

© 2024 chempedia.info