Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Applications ferroelectric smectic displays

It can be safely predicted that applications of liquid crystals will expand in the future to more and more sophisticated areas of electronics. Potential applications of ferroelectric liquid crystals (e.g. fast shutters, complex multiplexed displays) are particularly exciting. The only LC that can show ferroelectric property is the chiral smectic C. Viable ferroelectric displays have however not yet materialized. Antifer-roelectric phases may also have good potential in display applications. Supertwisted nematic displays of twist artgles of around 240° and materials with low viscosity which respond relatively fast, have found considerable application. Another development is the polymer dispersed liquid crystal display in which small nematic droplets ( 2 gm in diameter) are formed in a polymer matrix. Liquid crystalline elastomers with novel physical properties would have many applications. [Pg.465]

Perhaps one of the most important applications of chiral induction is in the area of liquid crystals. Upon addition of a wide range of appropriate chiral compounds, the achiral nematic, smectic C, and discotic phases are converted into the chiral cholesteric (or twisted nematic), the ferroelectric smectic C and the chiral discotic phases. As a first example, we take the induction of chirality in the columns of aromatic chromophores present in some liquid-crystalline polymers. " The polymers, achiral polyesters incorporating triphenylene moieties, display discotic mesophases, which upon doping with chiral electron acceptors based on tetranitro-9-fluorene, form chiral discotic phases in which the chirality is determined by the dopant. These conclusions were reached on the basis of CD spectra in which strong Cotton effects were observed. Interestingly, the chiral dopants were unable to dramatically influence the chiral winding of triphenylene polymers that already incorporated ste-reogenic centers. [Pg.247]

The concept of defects came about from crystallography. Defects are dismptions of ideal crystal lattice such as vacancies (point defects) or dislocations (linear defects). In numerous liquid crystalline phases, there is variety of defects and many of them are not observed in the solid crystals. A study of defects in liquid crystals is very important from both the academic and practical points of view [7,8]. Defects in liquid crystals are very useful for (i) identification of different phases by microscopic observation of the characteristic defects (ii) study of the elastic properties by observation of defect interactions (iii) understanding of the three-dimensional periodic structures (e.g., the blue phase in cholesterics) using a new concept of lattices of defects (iv) modelling of fundamental physical phenomena such as magnetic monopoles, interaction of quarks, etc. In the optical technology, defects usually play the detrimental role examples are defect walls in the twist nematic cells, shock instability in ferroelectric smectics, Grandjean disclinations in cholesteric cells used in dye microlasers, etc. However, more recently, defect structures find their applications in three-dimensional photonic crystals (e.g. blue phases), the bistable displays and smart memory cards. [Pg.209]

The ferroelectric smectic C liquid crystal display has not, at the time of writing, achieved extensive commercial use. It nevertheless stands as an important device, both because of its potential application in complex displays, which will not require an active matrix, and because of its intrinsic scientific interest. In addition, ferroelectric liquid crystal displays show faster switching rates (of the order of microseconds) than conventional nematic-based displays. [Pg.786]

It is possible to use a liquid crystal material in various ways depending on the application in flexible display. In order to stabilize the substrate spacing, polymer walls and fibers allow also the application of ferroelectric liquid crystal, whose molecular alignment structure is conventionally known to be fragile and called as smectic layers. [Pg.216]

Nematic materials are only one member of a large family of a variety of structurally different compounds forming liquid crystalline mesophases. Although only nematics have yet found really widespread use, mostly for display applications, some structurally highly diverse smectic phases also have unique electrooptical characteristics, for example ferroelectricity or antiferroelectricity, which can be modulated by selective fluorination [5, 51]. For 20 years intensive effort has been devoted to making practical use of these phenomena. [Pg.234]

Calamitic metallomesogens forming a chiral smectic C phase (SmC ) are ferroelectric materials. Due to the low symmetry of this phase when the helix is unwound (C2) the molecular dipoles are aUgned within the layers of the SmC phase, giving rise to ferroelectric order in the layers. Because the SmC phase has a helical structure, there is no net macroscopic dipole moment for the bulk phase. However, it is possible to unwind the helix by application of an external electric field or by surface anchoring in thin cells. Under such conditions, a well-aligned film of the ferroelectric liquid crystal can exhibit a net polarisation, called the spontaneous polarisation (Ps). Ferroelectric liquid crystals are of interest for display applications because the macroscopic polarisation can be switched very fast by an... [Pg.108]

The twist grain boundary smectic phase was discovered serendipitously at Bell Laboratories in 1987. Its discovery followed the back-tracking of a number of decisions made concerning the development of ferroelectric liquid crystals for display device applications. [Pg.101]

During the 1980s the development of ferroelectric liquid crystals continued at Bell Laboratories, and the above property-structure correlations suggested to us that, for the development of smectic C and smectic materials which would be suitable for use in applications of ferroelectric displays, it would not be wise to investigate 1-methylalkyl-substituted systems because of the... [Pg.102]

The subject of liquid crystals has now grown to become an exciting interdisciplinary field of research with important practical applications. This book presents a systematic and self-contained treatment of the physics of the different types of thermotropic liquid crystals - the three classical types, nematic, cholesteric and smectic, composed of rod-shaped molecules, and the newly discovered discotic type composed of disc-shaped molecules. The coverage includes a description of the structures of these four main types and their polymorphic modifications, their thermodynamical, optical and mechanical properties and their behaviour under external fields. The basic principles underlying the major applications of liquid crystals in display technology (for example, the twisted and supertwisted nematic devices, the surface stabilized ferroelectric device, etc.) and in thermography are also discussed. [Pg.461]

The surface-stabilized ferroelectric liquid crystals in the smectic C (SmC ) phase are among the most interesting types of liquid-crystalline systems because of their potential applications in high-resolution flat panel displays and fast electro-optical devices [73-76]. Within this class of compounds, ferroelectric liquid-crystalline polymers (FLCPs) have gained theoretical and practical interest as systems which combine the properties of polymers and ferroelectric liquid crystals. This combination is achieved by attaching the ferroelectric mesogen to a main chain via a flexible spacer... [Pg.55]

The existence or nonexistence of mirror symmetry plays an important role in nature. The lack of mirror symmetry, called chirality, can be found in systems of all length scales, from elementary particles to macroscopic systems. Due to the collective behavior of the molecules in liquid crystals, molecular chirality has a particularly remarkable influence on the macroscopic physical properties of these systems. Probably, even the flrst observations of thermotropic liquid crystals by Planer (1861) and Reinitzer (1888) were due to the conspicuous selective reflection of the helical structure that occurs in chiral liquid crystals. Many physical properties of liquid crystals depend on chirality, e.g., certain linear and nonlinear optical properties, the occurrence of ferro-, ferri-, antiferro- and piezo-electric behavior, the electroclinic effect, and even the appearance of new phases. In addition, the majority of optical applications of liquid crystals is due to chiral structures, namely the ther-mochromic effect of cholesteric liquid crystals, the rotation of the plane of polarization in twisted nematic liquid crystal displays, and the ferroelectric and antiferroelectric switching of smectic liquid crystals. [Pg.511]

Small polar lateral substituents have been made of considerable use in the development of materials that exhibit smectic C phases for applications as host systems for ferroelectric display devices [31]. Small polar groups do not depress mesophase formation greatly, and in addition they can be po-... [Pg.1403]

It is possible to express ferroelectricity in a non-ferroelectric liquid crystal compound exhibiting a smectic phase with a tilt angle such as a smectic C phase by mixing with a chiral dopant. The first smectic C liquid crystal system was a phenyl pyrimidine compound. For the application in displays the following points need to be satisfied small chiral dopant amount, large spontaneous polarization, low viscosity, and optimum temperature range. [Pg.247]


See other pages where Applications ferroelectric smectic displays is mentioned: [Pg.9]    [Pg.323]    [Pg.135]    [Pg.35]    [Pg.5]    [Pg.20]    [Pg.2565]    [Pg.219]    [Pg.231]    [Pg.378]    [Pg.419]    [Pg.446]    [Pg.476]    [Pg.283]    [Pg.47]    [Pg.118]    [Pg.70]    [Pg.3]    [Pg.4]    [Pg.18]    [Pg.1513]    [Pg.827]    [Pg.47]    [Pg.280]   
See also in sourсe #XX -- [ Pg.271 , Pg.272 , Pg.273 , Pg.274 , Pg.275 ]




SEARCH



Applications ferroelectrics

Ferroelectric Smectic Displays

Ferroelectric applications

Ferroelectric displays

Smectic applications

Smectics, ferroelectricity

© 2024 chempedia.info