Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anode reactions oxygen electrode

If the active site of the enzyme is located sufficiently close to the electrode surface electrons can be transferred directly from the enzyme to the electrode as depicted in Figure 5.3a. In the case of an anodic reaction, the electrode replaces the natural co-substrate (such as oxygen) as an electron acceptor. This process is known as direct electron transfer (DFT), often categorized as third-generation enzyme electrodes in the biosensor literature, and is the most elegant and simplest method of bioelectrocatalysis between an enzyme active site and an electrode. [Pg.232]

It is not appropriate here to consider the kinetics of the various electrode reactions, which in the case of the oxygenated NaCl solution will depend upon the potentials of the electrodes, the pH of the solution, activity of chloride ions, etc. The significant points to note are that (a) an anode or cathode can support more than one electrode process and b) the sum of the rates of the partial cathodic reactions must equal the sum of the rates of the partial anodic reactions. Since there are four exchange processes (equations 1.39-1.42) there will be eight partial reactions, but if the reverse reactions are regarded as occurring at an insignificant rate then... [Pg.81]

When the electrode is placed in an aqueous solution of glucose which has been suitably diluted with a phosphate buffer solution (pH 7.3), solution passes through the outer membrane into the enzyme where hydroxen peroxide is produced. Hydrogen peroxide can diffuse through the inner membrane which, however, is impermeable to other components of the solution. The electrode vessel contains phosphate buffer, a platinum wire and a silver wire which act as electrodes. A potential of 0.7 volts is applied to the electrodes (the apparatus shown in Fig. 16.17 is suitable) with the platinum wire as anode. At this electrode the reaction H202->02 + 2H+ +2e takes place, and the oxygen produced is reduced at the silver cathode ... [Pg.639]

In acid electrolytes, carbon is a poor electrocatalyst for oxygen evolution at potentials where carbon corrosion occurs. However, in alkaline electrolytes carbon is sufficiently electrocatalytically active for oxygen evolution to occur simultaneously with carbon corrosion at potentials corresponding to charge conditions for a bifunctional air electrode in metal/air batteries. In this situation, oxygen evolution is the dominant anodic reaction, thus complicating the measurement of carbon corrosion. Ross and co-workers [30] developed experimental techniques to overcome this difficulty. Their results with acetylene black in 30 wt% KOH showed that substantial amounts of CO in addition to C02 (carbonate species) and 02, are... [Pg.238]

Electrode A is called the anode because the anodic reaction is favored over the cathodic reaction. In a fuel cell, the anodic oxidation of H2 is favored. The corresponding reaction at the cathode, electrode B, is the cathodic oxygen reduction reaction,... [Pg.313]

For metal electrodes, the anodic 03Q n reaction proceeds at electrode potentials more anodic than the equilibrium potential Bo of the reaction as shown in Fig. 10-14. For n-type semiconductor electrodes, the anodic photoexdted oxygen reaction proceeds at electrode potentials where the potential E of the valence band edge (predsely, the potential pEp of the quasi-Fermi level of interfadal holes, pCp = — CpEp) is more anodic than the equilibrium oxygen potential Eq, even i/the observed electrode potential E is less anodic than the equilibrium oxygen potential E03. The anodic hole transfer of the o Qgen reaction, hence, occurs at photoexdted n-type semiconductor electrodes even in the range of potential less anodic than the equilibriiun potential Eq of the reaction as shown in Fig. 10-14. [Pg.339]

Fig. 10-14. Energy levels and polarization curves (current vs. potential) for anodic transfer ofphotoexdted holes in oxygen reaction (2 HgO. -t- 4h O24 4 H. ) on a metal electrode and on an n-type semiconductor electrode j = anodic reaction current ep(02 20)- Fermi level of oxygen electrode reaction dCpi, = gain of photoenergy q = potential for the onset of anodic photoexdted ox en reacti . 4 pi, (=-Ae.. le) = shift of potential for the onset of anodic oxygen reaction from equilibrium oxygen potential in the negative direction due to gain of photoenergy in an n-type electrode Eib = flat band potential of an n-type electrode. Fig. 10-14. Energy levels and polarization curves (current vs. potential) for anodic transfer ofphotoexdted holes in oxygen reaction (2 HgO. -t- 4h O24 4 H. ) on a metal electrode and on an n-type semiconductor electrode j = anodic reaction current ep(02 20)- Fermi level of oxygen electrode reaction dCpi, = gain of photoenergy q = potential for the onset of anodic photoexdted ox en reacti<H> . 4 pi, (=-Ae.. le) = shift of potential for the onset of anodic oxygen reaction from equilibrium oxygen potential in the negative direction due to gain of photoenergy in an n-type electrode Eib = flat band potential of an n-type electrode.
Fig. 10-28. Polarization curves for cell reactions of photoelectrolytic decomposition of water at a photoezcited n-type anode and at a metal cathode solid curve M = cathodic polarization curve of hydrogen evolution at metal cathode solid curve n-SC = anodic polarization curve of oxygen evolution at photoezcited n-type anode (Fermi level versus current curve) dashed curve p-SC = quasi-Fermi level of interfadal holes as a ftmction of anodic reaction current at photoezcited n-type anode (anodic polarization curve r re-sented by interfacial hole level) = electrode potential of two operating electrodes in a photoelectrolytic cell p. sc = inverse overvoltage of generation and transport ofphotoezcited holes in an n-type anode. Fig. 10-28. Polarization curves for cell reactions of photoelectrolytic decomposition of water at a photoezcited n-type anode and at a metal cathode solid curve M = cathodic polarization curve of hydrogen evolution at metal cathode solid curve n-SC = anodic polarization curve of oxygen evolution at photoezcited n-type anode (Fermi level versus current curve) dashed curve p-SC = quasi-Fermi level of interfadal holes as a ftmction of anodic reaction current at photoezcited n-type anode (anodic polarization curve r re-sented by interfacial hole level) = electrode potential of two operating electrodes in a photoelectrolytic cell p. sc = inverse overvoltage of generation and transport ofphotoezcited holes in an n-type anode.
There existed oxidation-reduction reactions with the same reaction speed on the sulphide mineral surface in water. One is the self-corrosion of sulphide mineral. Another is the reduction of oxygen. If the equilibrium potential for the anodic reaction and the cathodic reaction are, respectively, E and, and the mineral electrode potential is E, the relationship among them is as follows ... [Pg.168]

Figure 2. Representation of (A, top) an electrochemical capacitor (supercapacitor), illustrating the energy storage in the electric double layers at the electrode—electrolyte interfaces, and (B, bottom) a fuel cell showing the continuous supply of reactants (hydrogen at the anode and oxygen at the cathode) and redox reactions in the cell. Figure 2. Representation of (A, top) an electrochemical capacitor (supercapacitor), illustrating the energy storage in the electric double layers at the electrode—electrolyte interfaces, and (B, bottom) a fuel cell showing the continuous supply of reactants (hydrogen at the anode and oxygen at the cathode) and redox reactions in the cell.
Eor the purpose of modeling, consider a planar SOEC divided into anode gas channel, anode gas diffusion electrode, anode interlayer (active electrode), electrolyte, cathode interlayer (active electrode), cathode gas diffusion electrode, and cathode gas channel. The electrochemical reactions occur in the active regions of the porous electrodes (i.e., interlayers). In an SOFC, oxidant reduction occurs in the active cathode. The oxygen ions are then transported through the electrolyte, after which oxidation of the fuel occurs in the active anode by the following reactions. [Pg.522]

The third aspect to consider is the electrochemical stability of the material used. For the oxygen reduction reaction, the electrode potential is highly anodic and at this potential, most metals dissolve actively in acid media or form passive oxide films that will Inhibit this reaction. The oxide forming metals can form non-conducting or semi-conducting oxide films of variable thickness. In alkaline solutions, the range of metals that can be used is broader and can include non-precious or semi-precious metals (Ni, Ag). [Pg.310]

Wendt, H. and Plzak, V. (1990) Electrode kinetics and electrocatalysis of hydrogen and oxygen electrode reactions. 2. Electrocatalysis and electrocatalysts for cathodic evolution and anodic oxidation of hydrogen, in Electrochemical Hydrogen Technologies (ed. H. Wendt), Elsevier, Amsterdam, Chapter 1. 2. [Pg.268]

The electrode reactions are comprised of the oxidation of hydrogen on Ihe anode (the negative electrode) to hydrated protons with the release ol electrons and on the cathode (the positive electrode) the reaction of oxygen with protons la I unn water vapor with the consumption of electrons. Electrons llow from the anode through the external load to the cathode and the circuit is closed by ionic current transport through the electrolyte. In an acid cell, the current is carried by protons. [Pg.688]

In the case of the ternary eutectic Li2C03-Na2C03-K2C03 at 605°C saturated with pure C02 (p02 = 6), the anodic limit is about 0.27 V vs. the oxygen electrode however, when saturated with Li20 (pO2- = 0) this melt is reported to exhibit an anodic limit of only -0.23 V [5]. The cathodic limit of ternary eutectic carbonate melts with p02 = 2 to 6 is about -1.9 to -2.1 V [5]. The reduction process produces elemental carbon according to the reaction... [Pg.514]

It is well known that the oxidation of phenolic compounds at solid electrodes produces phenoxy radicals, which couple to form a passivating polymeric film on the electrode surfaces [20,21]. The anodic reaction proceeds through an initial one-electron step to form phenoxy radicals, which subsequently can undergo either polymerization or further oxidation with the transfer of oxygen from hydroxyl radicals at the electrode... [Pg.212]

The hydrogen oxidation within a fuel cell occurs partly at the anode and the cathode. Different models were supposed for the detailed reaction mechanisms of the hydrogen at Ni-YSZ (yttria stabilised zirconia) cermet anodes. The major differences of the models were found with regard to the location where the chemical and electrochemical reactions occur at the TPB (three-phase boundary of the gaseous phase, the electrode and the electrolyte). However, it is assumed that the hydrogen is adsorbed at the anode, ionised and the electrons are used within an external electrical circuit to convert the electrical potential between the anode and the cathode into work. Oxygen is adsorbed at the cathode and ionised by the electrons of the load. The electrolyte leads the oxide ion from the cathode to the anode. The hydrogen ions (protons) and the oxide ion form a molecule of water. The anodic reaction is... [Pg.18]

Anodic reactions at Pt have been claimed to be dependent upon the surface state of the platinum. The Kolbe reaction is perhaps the best known case (for a review, see Conway and Vijh, 1967) for which a change in the surface composition has been held responsible and indeed necessary for the reaction to occur. Thus, at a low potential, < 0-8 V, acetate in aqueous solution is completely oxidized to carbon dioxide and water on pure platinum sites (i.e. we have in effect a fuel cell electrode). On raising the potential, PtO and adsorbed oxygen begin to cover the surface and oxygen evolution takes place in the range between 1-2- 1-8 V. A further increase in the... [Pg.112]


See other pages where Anode reactions oxygen electrode is mentioned: [Pg.133]    [Pg.303]    [Pg.500]    [Pg.461]    [Pg.564]    [Pg.446]    [Pg.453]    [Pg.94]    [Pg.1046]    [Pg.271]    [Pg.280]    [Pg.102]    [Pg.274]    [Pg.288]    [Pg.95]    [Pg.233]    [Pg.101]    [Pg.205]    [Pg.159]    [Pg.160]    [Pg.40]    [Pg.344]    [Pg.212]    [Pg.100]    [Pg.291]    [Pg.784]    [Pg.276]    [Pg.139]    [Pg.396]    [Pg.275]    [Pg.423]    [Pg.171]    [Pg.277]   
See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Anode reactions

Anodic reactions

Anodized electrodes

Electrode anode

Electrode reactions

Electrodes anode reaction

Oxygen electrode

Oxygen, electrode reactions

© 2024 chempedia.info