Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic palladium complexes

The ease of formation of the carbene depends on the nucleophilicity of the anion associated with the imidazolium. For example, when Pd(OAc)2 is heated in the presence of [BMIM][Br], the formation of a mixture of Pd imidazolylidene complexes occurs. Palladium complexes have been shown to be active and stable catalysts for Heck and other C-C coupling reactions [34]. The highest activity and stability of palladium is observed in the ionic liquid [BMIM][Brj. Carbene complexes can be formed not only by deprotonation of the imidazolium cation but also by direct oxidative addition to metal(O) (Scheme 5.3-3). These heterocyclic carbene ligands can be functionalized with polar groups in order to increase their affinity for ionic liquids. While their donor properties can be compared to those of donor phosphines, they have the advantage over phosphines of being stable toward oxidation. [Pg.269]

However, the practical, direct synthesis of functionalized linear polyolefins via coordination copolymerization olefins with polar monomers (CH2 = CHX) remains a challenging and industrially important goal. In the mid-1990s Brookhart et al. [25, 27] reported that cationic (a-diimine)palladium complexes with weakly coordinating anions catalyze the copolymerization of ethylene with alkylacrylates to afford hyperbranched copolymers with the acrylate functions located almost exclusively at the chain ends, via a chain-walking mechanism that has been meticulously studied and elucidated by Brookhart and his collaborators at DuPont [25, 27], Indeed, this seminal work demonstrated for the first time that the insertion of acrylate monomers into certain late transition metal alkyl species is a surprisingly facile process. It spawned almost a decade of intense research by several groups to understand and advance this new science and to attempt to exploit it commercially [30-33, 61]. [Pg.163]

Other electron-poor clusters include the 44-electron Pt3(CO)3(PPh3)4 and the 42-electron species Pd3(CO)3(PPh3)3 and [Re3Cl12p. For the 44-electron system, the 18-electron rule predicts two double bonds within the M3 triangle and for the 42-electron complexes, three double bonds. The structures of the platinum and palladium complexes are unknown, but the Re-Re distances of 2.47-2.49 A in the anion [Re l ]3- are regarded (20) as short and consistent with a formal bond order of two. [Pg.239]

In a slightly less convenient procedure, but one which has general versatility, carbonylation of aryl (or vinyl) palladium compounds produces aryl, heteroaryl, and vinyl carboxylic acids. As with the other procedures, immediate upon its formation, the carboxylate anion migrates to the aqueous phase. Consequently, haloaromatic acids can be obtained from dihaloarenes, without further reaction of the second halogen atom, e.g. 1,4-dibromobenzene has been carbonylated (90% conversion) to yield 4-bromobenzoic acid with a selectivity for the monocarbonylation product of 95%. Additionally, the process is economically attractive, as the organic phase containing the catalyst can be cycled with virtually no loss of activity and ca. 4000 moles of acid can be produced for each mole of the palladium complex used [4],... [Pg.383]

Often Lewis acids are added to the system as a cocatalyst. It could be envisaged that Lewis acids enhance the cationic nature of the nickel species and increase the rate of reductive elimination. Indeed, the Lewis acidity mainly determines the activity of the catalyst. It may influence the regioselectivity of the catalyst in such a way as to give more linear product, but this seems not to be the case. Lewis acids are particularly important in the addition of the second molecule of HCN to molecules 2 and 4. Stoichiometrically, Lewis acids (boron compounds, triethyl aluminium) accelerate reductive elimination of RCN (R=CH2Si(CH3)3) from palladium complexes P2Pd(R)(CN) (P2= e g. dppp) [7], This may involve complexation of the Lewis acid to the cyanide anion, thus decreasing the electron density at the metal and accelerating the reductive elimination. [Pg.232]

The use of a basic solvent (in this case diethylamine) is important to stabilize acetylenic anions.(9) The third catalyst system component, triphenyl phosphine, is presumably added to help replace lost triphenyl phosphine ligands on the palladium complex and thus prevent metal agglomeration. [Pg.23]

The water-soluble palladium complex prepared from [Pd(MeCN)4](Bp4)2 and tetrasulfonated DPPP (34, n=3, m=0) catalyzed the copolymerization of CO and ethene in neutral aqueous solutions with much lower activity [21 g copolymer (g Pd) h ] [53] than the organosoluble analogue in methanol. Addition of strong Brpnsted acids with weakly coordinating anions substantially accelerated the reaction, and with a catalyst obtained from the same ligand and from [Pd(OTs)2(MeCN)2] but in the presence of p-toluenesulfonic acid (TsOH) 4 kg copolymer was produced per g Pd in one hour [54-56] (Scheme 7.16). Other tetrasulfonated diphosphines (34, n=2, 4 or 5, m=0) were also tried in place of the DPPP derivative, but only the sulfonated DPPB (n=4) gave a catalyst with considerably higher activity [56], Albeit with lower productivity, these Pd-complexes also catalyze the CO/ethene/propene terpolymerization. [Pg.206]

Scheme 6.27 considers other, formally confined, conformers of cycloocta-l,3,5,7-tetraene (COT) in complexes with metals. In the following text, M(l,5-COT) and M(l,3-COT) stand for the tube and chair structures, respectively. M(l,5-COT) is favored in neutral (18-electron) complexes with nickel, palladium, cobalt, or rhodium. One-electron reduction transforms these complexes into 19-electron forms, which we can identify as anion-radicals of metallocomplexes. Notably, the anion-radicals of the nickel and palladium complexes retain their M(l,5-COT) geometry in both the 18- and 19-electron forms. When the metal is cobalt or rhodium, transition in the 19-electron form causes quick conversion of M(l,5-COT) into M(l,3-COT) form (Shaw et al. 2004, reference therein). This difference should be connected with the manner of spin-charge distribution. The nickel and palladium complexes are essentially metal-based anion-radicals. In contrast, the SOMO is highly delocalized in the anion-radicals of cobalt and rhodium complexes, with at least half of the orbital residing in the COT ring. For this reason, cyclooctateraene flattens for a while and then acquires the conformation that is more favorable for the spatial structure of the whole complex, namely, M(l,3-COT) (see Schemes 6.1 and 6.27). [Pg.338]

Recently, the oxidative addition of C2-S bond to Pd has been described. Methyl levamisolium triflate reacts with [Pd(dba)2] to give the cationic palladium complex 35 bearing a chiral bidentate imidazolidin-2-ylidene ligand [120]. The oxidative addition of the levamisolium cation to triruthenium or triosmium carbonyl compounds proceeds also readily to yield the carbene complexes [121], The oxidative addition of imidazolium salts is not limited to or d transition metals but has also been observed in main group chemistry. The reaction of a 1,3-dimesitylimidazolium salt with an anionic gallium(I) heterocycle proceeds under formation of the gaUium(III) hydrido complex 36 (Fig. 12) [122]. [Pg.108]

The most recent development concerns the heterocyclic (amino)(ylide)carbenes AYC. Such compounds have been known for some years [203] but so far had little impact compared to their diamino stabilized relatives. Both phosphorus ylide (86) and sulfur ylide (87) stabilized AYC ligands have been generated in situ and were stabilized at suitable metal centers (Fig. 27) [204, 205]. The palladium complex 88 with an anionic (amino) [bis(ylide)]carbene is also known [206]. [Pg.120]

The 1,3-diene moiety in 227 which included the carbon atoms and CVC was oxidized to the l,4-dihydroxy-2-ene moiety in 238 that was further exploited to functionalise the A-ring as well as for the annulation of the C-ring (Scheme 37). The transformation of 227 into 238 was realized by a diastereoselective epoxidation of 227 to afford a vinyl epoxide (241) that was subjected to the conditions for a Palladium(O)-catalysed allylic substitution with the acetate ion [126]. The mechanism and the stereochemical course of the allylic substitution may be explained as depicted in Scheme 37. Sn2 ring opening of the protonated vinyl epoxide 241 by an anionic Pd complex proceeded with a (3Si) topicity to the r-allyl Pd com-... [Pg.123]

Sehemc4.t t. Catalytic cycle for the reduction of 317 halides by palladium complexes. Outer circle represents the electrochemical process, I. = Hly,P and. some anionic ligands are omitted for clarity. Tlie inner shunt is the non-elcciroehemieal reaction with arylzinc halides. [Pg.147]

The transition metal catalysed formation of five membered heterocycles through the insertion of a triple bond has also been explored. o-Halophenyl-alkynylamines, propargylamines and propargyl-ethers have been subjected to ring closure reactions. These processes, however also require the presence of a second, anionic reagent, which converts the palladium complex formed in the insertion step to the product. [Pg.39]

Since the substitution reaction succeeded so well with olefins, the obvious extension to acetylenes was tried. Of course, only terminal acetylenes could be used if an acetylenic product was to be formed. This reaction has been found to occur but probably not by a mechanism analogous to the reaction of olefins (43,44). It was found that the more acidic acetylene phenylacetylene reacted with bromobenzene in the presence of triethylamine and a bisphos-phine-palladium complex to form diphenylacetylene, while the less acidic acetylene, 1-hexyne did not react appreciably under the same conditions. The reaction did occur when the more basic amine piperidine was used instead of triethylamine, however (43). Both reactions occur with sodium methoxide as the base (44). It therefore appears that the acetylide anion is reacting with the catalyst and that a reductive elimination of the disubstituted acetylene is... [Pg.345]

The addition of the trimethylenemethane-palladium complex to alkenes may proceed by a concerted process or via a stepwise mechanism in which the anion of the 1,3-dipole attacks Michael-fashion to generate an intermediate anion which collapses to form a five-membered ring by attack on the allylpalla-dium complex. This [3 + 2] cycloaddition reaction has been reviewed.128 A number of additional reports of its use have appeared recently.129-134... [Pg.593]

Stereoselective allylic alkylations have been carried out with the aid of palladium catalysts. The 17-(Z)-ethylidene groups of steroids (obtained from the ketones by Wittig olefination) form n-allyl palladium complexes in the presence of copper(n) salts (B.M. Trost, 1974, 1976). Their alkylation with dimethyl malonate anions in the presence of 1,2-ethane-diylbis[diphenylphosphine] (— diphos) gives a reaction exclusively at the side chain and only the (20S) products. If one starts with the endocyclic 16,17 double bond and replaces an (S)-20-acetoxy group by using tetrakis(triphenylphospbine)palladium,the substitution occurs with complete retention of configuration, resulting from two complete inversions (B.M. Trost, 1976). [Pg.27]

The formation of compound 175 could be rationalized in terms of an unprecedented domino allene amidation/intramolecular Heck-type reaction. Compound 176 must be the nonisolable intermediate. A likely mechanism for 176 should involve a (ji-allyl)palladium intermediate. The allene-palladium complex 177 is formed initially and suffers a nucleophilic attack by the bromide to produce a cr-allylpalladium intermediate, which rapidly equilibrates to the corresponding (ji-allyl)palladium intermediate 178. Then, an intramolecular amidation reaction on the (ji-allyl)palladium complex must account for intermediate 176 formation. Compound 176 evolves to tricycle 175 via a Heck-type-coupling reaction. The alkenylpalladium intermediate 179, generated in the 7-exo-dig cyclization of bro-moenyne 176, was trapped by the bromide anion to yield the fused tricycle 175 (Scheme 62). Thus, the same catalytic system is able to promote two different, but sequential catalytic cycles. [Pg.38]


See other pages where Anionic palladium complexes is mentioned: [Pg.141]    [Pg.323]    [Pg.47]    [Pg.73]    [Pg.141]    [Pg.323]    [Pg.47]    [Pg.73]    [Pg.27]    [Pg.154]    [Pg.581]    [Pg.221]    [Pg.35]    [Pg.589]    [Pg.177]    [Pg.154]    [Pg.179]    [Pg.182]    [Pg.190]    [Pg.190]    [Pg.52]    [Pg.600]    [Pg.618]    [Pg.318]    [Pg.168]    [Pg.564]    [Pg.245]    [Pg.400]    [Pg.398]    [Pg.111]    [Pg.153]    [Pg.615]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Anion complexation

Anion, , complex

Complex anionic

Palladium complex compounds, anions

The Role of Redox Processes in Reactions Catalyzed by Nickel and Palladium Complexes with Anionic Pincer Ligands

© 2024 chempedia.info