Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anion acid complexes

Nickel and Cobalt. Often present with copper in sulfuric acid leach Hquors are nickel [7440-02-0] and cobalt [7440-48-4]. Extraction using an organophosphoric acid such as D2EHPA at a moderate (3 to 4) pH can readily take out the nickel and cobalt together, leaving the copper in the aqueous phase, but the cobalt—nickel separation is more difficult (274). In the case of chloride leach Hquors, separation of cobalt from nickel is inherently simpler because cobalt, unlike nickel, has a strong tendency to form anionic chloro-complexes. Thus cobalt can be separated by amine extractants, provided the chloride content of the aqueous phase is carefully controUed. A successhil example of this approach is the Falcon-bridge process developed in Norway (274). [Pg.81]

Iron hahdes react with haHde salts to afford anionic haHde complexes. Because kon(III) is a hard acid, the complexes that it forms are most stable with F and decrease ki both coordination number and stabiHty with heavier haHdes. No stable F complexes are known. [FeF (H20)] is the predominant kon fluoride species ki aqueous solution. The [FeF ] ion can be prepared ki fused salts. Whereas six-coordinate [FeCy is known, four-coordinate complexes are favored for chloride. Salts of tetrahedral [FeCfy] can be isolated if large cations such as tetraphenfyarsonium or tetra alkylammonium are used. [FeBrJ is known but is thermally unstable and disproportionates to kon(II) and bromine. Complex anions of kon(II) hahdes are less common. [FeCfy] has been obtained from FeCfy by reaction with alkaH metal chlorides ki the melt or with tetraethyl ammonium chloride ki deoxygenated ethanol. [Pg.436]

Plutonium(III) in aqueous solution, Pu " ( 4)> is pale blue. Aqueous plutonium(IV) is tan or brown the nitrate complex is green. Pu(V) is pale red-violet or pink in aqueous solution and is beUeved to be the ion PuO Pu(VI) is tan or orange in acid solution, and exists as the ion PuO. In neutral or basic solution Pu(VI) is yellow cationic and anionic hydrolysis complexes form. Pu(VII) has been described as blue-black. Its stmcture is unknown but may be the same as the six-coordinate NpO (OH) (91). Aqueous solutions of each oxidation state can be prepared by chemical oxidants or reductants... [Pg.198]

According to a detailed mechanistic study, the first step is the abstraction of the relatively acidic hydrazone proton (93- 97). This is followed by hydride attack on the trigonal carbon of the C=N bond, mainly from the a-side at C-3, together with the concomitant loss of the tosylate anion (97 -> 98). Expulsion of nitrogen from the resulting intermediate (98) yields a fairly insoluble anion-metal complex (99) which upon decomposition with water provides the methylene derivative (100). [Pg.174]

The separation of basic precipitates of hydrous Th02 from the lanthanides in monazite sands has been outlined in Fig. 30.1 (p. 1230). These precipitates may then be dissolved in nitric acid and the thorium extracted into tributyl phosphate, (Bu"0)3PO, diluted with kerosene. In the case of Canadian production, the uranium ores are leached with sulfuric acid and the anionic sulfato complex of U preferentially absorbed onto an anion exchange resin. The Th is separated from Fe, A1 and other metals in the liquor by solvent extraction. [Pg.1255]

Anionic carbonyl complexes of both rhodium(I) and (III) are synthesized by decarbonylation of formic acid, with reduction to rhodium(I) occurring... [Pg.102]

The compound 2,4-pentanedione (also known as acetylacetone and abbreviated to acac) is acidic and can be deprotonated. The anion forms complexes with metals that are used in gasoline additives, lubricants, insecticides, and fungicides, (a) Estimate the bond angles marked with arcs and lowercase letters in 2,4-pentanedione and in the acac ion. [Pg.252]

The coordination of transition metal ions in acidic chloroaluminate melts has not been firmly established. However, in the case of AICb-EtMelmCI. the E0 values of simple redox systems that are electrochemically accessible in both acidic and basic melt, e.g., Hg(II)/Hg [51], Sb(III)/Sb [52], and Sn(II)/Sn [53] exhibit a large positive potential shift on going from basic melt, where metal ions are known to exist as discrete anionic chloride complexes, to acidic melt. Similar results were observed for Cu(I) in AlCh-NaCl [48]. This dramatic decrease in electrochemical stability isprima facie evidence that metal ions in acidic melt are probably only weakly solvated by anionic species such as AICI4 and AECI-. Additional evidence for this is derived from the results of EXAFS measurements of simple metal ions such Co(II), Mn(II), and Ni(II) in acidic AlCh-EtMelmCl, which indicate that each of these ions is coordinated by three bidentate AICI4 ions to give octahedrally-coordinated species such as [ M (AIC14) 2 ] [54]. Most transition metal chloride compounds are virtually... [Pg.284]

Dithiolate ligands form stable anionic square pyramidal complexes with the Re03+ core [10]. This has been exploited in the dimer-captosuccinic acid complexes of 186Re and 188Re (vide infra), and in the use of the cyclic anhydride of dimercaptosuccinic acid as a bifunctional chelator for bioconjugate formation. The anhydride, in protected form such as 38, is reacted with antibody or other protein to form an amide or... [Pg.118]

A mechanism similar to Scheme 10 was proposed, involving CO addition, followed by H20 addition (in lieu of hydroxide anion) to form a metallocarboxylic acid complex. Then, decomposition to C02 and a metal hydride was proposed, followed by hydride elimination. Table 15 provides data from reaction testing in the temperature range 140 to 180 °C. In later testing, they compared Rh and Ir complexes for the reduction of benzalacetone under water-gas shift conditions. [Pg.144]

This class of pigments consist of salts of the anions of complex inorganic acids with dye cations, primarily with triarylcarbonium cations. [Pg.549]

Crooks et al. reported the transfer of amine-functionalized poly(amidoamine) dendrimers into toluene containing dodecanoic acid [198], The method is based on the formation of ion pairs between the fatty acids and the terminal amine-groups. These dendrimer-fatty acid complexes resemble unimolecular inverted micelles and could be used as phase transfer vehicles for the transport of Methyl Orange, an anionic dye molecule, into an organic medium. [Pg.413]

The SB-GA mechanism consists of a rapid equilibrium deprotonation of the ZH intermediate, followed by rate-limiting, general acid-catalysed leaving-group departure from the anionic cr-complex Z via the concerted transition state, 2. The derived expression for this mechanism is equation 4, where fctBH is the rate coefficient for acid-catalyzed expulsion of L from Z and K3 is the equilibrium constant for the reaction ZH Z- + BH. [Pg.1218]

The transuranium elements are also separated from each other by these means (115), (122), (136) and their order of elution from the columns, which, like the rare-earths, is a function of their atomic number, has been used as important evidence of the identity of the new elements (123). Separation from the rare-earths is not possible, however, as their elution peaks coincide with those of the actinides. This separation can be made, however, using hydrochloric acid as the elutriant. The actinides form anionic chloride complexes more readily than the rare-earths and are consequently more readily removed from the cationic resin (114). [Pg.8]

Co-ordinated carbon monoxide is activated towards nucleophilic attack. Through o-donation and Tt-back donation into the antibonding CO K orbitals the carbon atom has obtained a positive character. This makes the carbon atom not only more susceptible towards a migrating anion at the metal centre, but also for a nucleophile attacking from outside the co-ordination sphere. In this instance it is more difficult to differentiate between the two pathways. There are examples showing that the electrophilicity of the carbon atom can be further increased by the action of Lewis acids complexing to the oxygen atom of the co-ordinated CO. [Pg.45]

Reactions 7 and 8 involve oxidation of rhodium(I) to rhodium(III). Reaction 8 can also be written as an oxidative addition of I2 (formed thermally from 2 HI) to the Rh(I) complex. Rhodium(III) iodide (for convenience written as an anionic carbonyl complex) may precipitate from the reaction medium. It has to be converted to rhodium(I) again. This is done in the acetic acid process by water and carbon monoxide. [Pg.110]

Closely related to the a-addition of nucleophiles is the P-deprotonation of electrophilic carbyne complexes. In many of the examples reported [143,530,531] the resulting vinylidene complexes could not be isolated but were generated in situ and either oxidized to yield stable carbene complexes [532] or used as intermediates for the preparation of other carbyne complexes [527]. Cationic carbyne complexes can be rather strong acids and undergo quick deprotonation to vinylidene complexes with weak bases [143]. An interesting example of the use of anionic vinylidene complexes as synthetic intermediates is sketched in Figure 3.24. [Pg.95]

Block copolymers of (R,S)-(3-butyrolactone and eCL have been synthesized by combining the anionic ROP of the first monomer with the coordinative ROP of the second one (Scheme 15) [71]. The first step consisted of the synthesis of hydroxy-terminated atactic P(3BL by anionic polymerization initiated by the alkali-metal salt of a hydroxycarboxylic acid complexed with a crown ether. The hydroxyl end group of P(3BL could then be reacted with AlEt3 to form a macroinitiator for the eCL ROP. [Pg.24]

The formation of the heterocycle 1 from the xylylene-bis-phosphonium salt 2 and PCI3 proceeds via a detectable intermediate 3 in a cascade of condensation reactions that is terminated by spontaneous heterolysis of the last remaining P-Cl bond in a cyclic bis-ylide-substituted chlorophosphine formed (Scheme 1) [15]. The reaction scheme is applicable to an arsenic analogue of 1 [15] and to bis-phosphonio-benzophospholides with different triaryl-, aryl-alkyl- and aryl-vinyl-phosphonio groups [16, 18, 19], but failed for trialkylphosphonio-substituted cations here, insufficient acidity prohibited obviously quantitative deprotonation of the phosphonium salts, and only mixtures of products with unreacted starting materials were obtained [19]. The cations were isolated as chloride or bromide salts, but conversion of the anions by complexation with Lewis-acids or metathesis was easily feasible [16, 18, 19] and even salts with organometallic anions ([Co(CO)4] , [CpM(CO)3] (M=Mo, W) were accessible [20]. [Pg.179]


See other pages where Anion acid complexes is mentioned: [Pg.388]    [Pg.131]    [Pg.378]    [Pg.63]    [Pg.68]    [Pg.176]    [Pg.145]    [Pg.221]    [Pg.409]    [Pg.51]    [Pg.728]    [Pg.127]    [Pg.451]    [Pg.228]    [Pg.267]    [Pg.133]    [Pg.49]    [Pg.266]    [Pg.162]    [Pg.145]    [Pg.21]    [Pg.120]    [Pg.107]    [Pg.165]    [Pg.136]    [Pg.675]    [Pg.164]   
See also in sourсe #XX -- [ Pg.87 ]




SEARCH



Anion complexation

Anion, , complex

Complex anionic

© 2024 chempedia.info