Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anhydrides to aldehydes

Reduction of Carboxylic Acids, Esters, and Anhydrides to Aldehydes ... [Pg.532]

A formal asymmetric nucleophilic addition to carbonyl compounds is achieved by Trost and his co-workers in the allylic alkylation of acylals of alkenals. An excellent enantioselectivity is observed in this alkylation. The starting acylals are easily prepared by the Lewis-acid catalyzed addition of acid anhydrides to aldehydes, by use of Trost s ligand 118 (Scheme 13), where various carbon-centered nucleophiles are available (Scheme l4),101,101a-10lc Asymmetric synthesis of some natural products is achieved according to this procedure. [Pg.91]

Reports from two laboratories indicate that in refluxing benzene, toluene, or xylene this reagent oxidizes certain carboxylic acids or their anhydrides to aldehydes. [Pg.486]

On the basis of the finding in Eq. 1.6 catalytic conversion of carboxylic anhydrides to aldehydes and carboxylic acids under hydrogen pressure has been developed (Eq. 1.8) [35]. The Ending in Eq. 1.7 on the other hand, could be applied to catalytic conversion of carboxylic anhydrides with organoboronic acids into ketone synthesis [36] (Eq. 1.9). [Pg.15]

It will also reduce acid chlorides, acid anhydrides and aldehydes to primary alcohols, ketones to secondary alcohols, and amides to the corresponding amines R-CONHi -> R CHiNH. Nitro-hydrocarbons if aromatic are... [Pg.155]

Acetic anhydride adds to acetaldehyde in the presence of dilute acid to form ethyUdene diacetate [542-10-9], boron fluoride also catalyzes the reaction (78). Ethyfldene diacetate decomposes to the anhydride and aldehyde at temperatures of 220—268°C and initial pressures of 14.6—21.3 kPa (110—160 mm Hg) (79), or upon heating to 150°C in the presence of a zinc chloride catalyst (80). Acetone (qv) [67-64-1] has been prepared in 90% yield by heating an aqueous solution of acetaldehyde to 410°C in the presence of a catalyst (81). Active methylene groups condense acetaldehyde. The reaction of isobutfyene/715-11-7] and aqueous solutions of acetaldehyde in the presence of 1—2% sulfuric acid yields alkyl-y -dioxanes 2,4,4,6-tetramethyl-y -dioxane [5182-37-6] is produced in yields up to 90% (82). [Pg.51]

Acetic anhydride can be used to synthesize methyl ketones in Friedel-Crafts reactions. For example, benzene [71-43-2] can be acetylated to furnish acetophenone [98-86-2]. Ketones can be converted to their enol acetates and aldehydes to their alkyUdene diacetates. Acetaldehyde reacts with acetic anhydride to yield ethyhdene diacetate [542-10-9] (18) ... [Pg.76]

The primary and secondary alcohol functionahties have different reactivities, as exemplified by the slower reaction rate for secondary hydroxyls in the formation of esters from acids and alcohols (8). 1,2-Propylene glycol undergoes most of the typical alcohol reactions, such as reaction with a free acid, acyl hahde, or acid anhydride to form an ester reaction with alkaU metal hydroxide to form metal salts and reaction with aldehydes or ketones to form acetals and ketals (9,10). The most important commercial appHcation of propylene glycol is in the manufacture of polyesters by reaction with a dibasic or polybasic acid. [Pg.366]

Acids are usually the end products of ketone oxidations (41,42,44) but vicinal diketones and hydroperoxyketones are apparent intermediates (45). Acids are readily produced from vicinal diketones, perhaps through anhydrides (via, eg, a Bayer-ViUiger reaction) (46,47). The hydroperoxyketones reportedly decompose to diketones as well as to aldehydes and acids (45). Similar products are expected from radical— radical reactions of the corresponding peroxy radical precursors. [Pg.336]

Alkyl Isoquinolines. Coal tar contains small amounts of l-methylisoquinoline [1721-93-3] 3-methylisoquinoline [1125-80-0] and 1,3-dimetliylisoquinoline [1721-94-4J. The 1- and 3-methyl groups are more reactive than others in the isoquinoline nucleus and readily oxidize with selenium dioxide to form the corresponding isoquinoline aldehydes (174). These compounds can also be obtained by the hydrolysis of the dihalomethyl group. The 1- and 3-methyhsoquinolines condense with benzaldehyde in the presence of zinc chloride or acetic anhydride to produce 1- and 3-styryhsoquinolines. Radicals formed by decarboxylation of carboxyUc acids react to produce 1-aIkyhsoquinolines. [Pg.398]

This chemoselectivity stands in contrast to that of 2,6-disubstituted pyridines. For example, 2,6-dimethylpyridine 35 was reacted with hydrogen peroxide and acetic anhydride to produce the expected acetoxy derivative 36. A second iteration of the previous reaction conditions did not afford an aldehyde, as in the previous example, but 2,6-bis-acetoxy derivative 37. [Pg.345]

The reaction mechanism involves deprotonation of the carboxylic anhydride 2 to give anion 4, which then adds to aldehyde 1. If the anhydride used bears two a-hydrogens, a dehydration takes place already during workup a /3-hydroxy carboxylic acid will then not be isolated as product ... [Pg.225]

Anhydrides, both aliphatic and aromatic, as well as mixed anhydrides of carboxylic and carbonic acids, have been reduced to aldehydes in moderate yields with disodium tetracarbonylferrate Na2Fe(CO)4. Heating a carboxylic acid, presumably to form the anhydride, and then reaction with Na/EtOH leads to the aldehyde. [Pg.533]

Tetrahydrocarbazoles have been prepared in one-flask syntheses from indoles, ketones and maleic anhydride, with acid catalysis. The reactions involve a condensation of the indole 121 with the ketone or aldehyde, followed by in situ trapping of the vinylindole 122 with maleic anhydride to afford tetrahydrocarbazoles 123 after double bond isomerization <96T4555>. [Pg.111]

Geranyl chloride can be prepared from geraniol by the careful use of triphenylphosphine in carbon tetrachloride. Tris(dimethylamino)phosphine reacts with carbon tetrachloride to form the complex (42) which can be used to form the enol esters (43) from acid anhydrides. Similarly, aldehydes form the alkenes (44), and esters or amides of trichloroacetic acid are converted to glycidic esters. ... [Pg.9]

The addition of Grignard reagents to aldehydes, ketones, and esters is the basis for the synthesis of a wide variety of alcohols, and several examples are given in Scheme 7.3. Primary alcohols can be made from formaldehyde (Entry 1) or, with addition of two carbons, from ethylene oxide (Entry 2). Secondary alcohols are obtained from aldehydes (Entries 3 to 6) or formate esters (Entry 7). Tertiary alcohols can be made from esters (Entries 8 and 9) or ketones (Entry 10). Lactones give diols (Entry 11). Aldehydes can be prepared from trialkyl orthoformate esters (Entries 12 and 13). Ketones can be made from nitriles (Entries 14 and 15), pyridine-2-thiol esters (Entry 16), N-methoxy-A-methyl carboxamides (Entries 17 and 18), or anhydrides (Entry 19). Carboxylic acids are available by reaction with C02 (Entries 20 to 22). Amines can be prepared from imines (Entry 23). Two-step procedures that involve formation and dehydration of alcohols provide routes to certain alkenes (Entries 24 and 25). [Pg.638]

The spirobenzylisoquinoline 171b derived from berberine (15) (Section IV,A,1) was oxidized with m-chloroperbenzoic acid to the /V-oxide 389, which was treated with trifluoroacetic anhydride to afford dehydrohydrastine (370) in 56% overall yield (Scheme 71) through the Polonovski reaction (187). Holland et al. (188,189) reported the reverse reaction from dehydrophthalides to spirobenzylisoquinolines, namely, 370 was reduced with diisobutylalu-minum hydride to give a mixture of two diastereoisomeric spirobenzylisoquinolines 320 and 348 via the enol aldehyde. This reaction was applied to synthesis of various spirobenzylisoquinoline alkaloids such as (+)-sibiricine (352), ( + )-corydaine (347), (+ )-raddeanone (354), ( )-yenhusomidine (359), (+ )-ochrobirine (343), and ( )-yenhusomine (323). [Pg.200]

The first examples of a homogeneous reduction of this type were reported in 1971. Cobalt carbonyl was found to reduce anhydrides such as acetic anhydride, succinic anhydride and propionic anhydride to mixtures of aldehydes and acids. However, scant experimental details were recorded [94]. In 1975, Lyons reported that [Ru(PPh3)3Cl2] catalyzes the reduction of succinic and phthalic anhydrides to the lactones y-bulyrolaclone and phthalide, respectively [95], The proposed reaction sequence for phthalic anhydride is shown in Scheme 15.15. Conversion of phthalic anhydride was complete in 21 h at 90 °C, but yielded an equal mixture of the lactone, phthalide (TON = 100 TOF 5) and o-phthalic acid, which is presumably formed by hydrolysis of the anhydride by water during lactoniza-tion. Neither acid or lactone were further hydrogenated to any extent using this catalyst system, under these conditions. [Pg.442]

Diones.1 CoCl2 also catalyzes a reaction between acetic anhydride and aldehydes to provide 1,2-diones by coupling of acetyl and acyl radicals. The un-symmetrical diones are obtained as the major products by use of excess acetic anhydride. [Pg.99]


See other pages where Anhydrides to aldehydes is mentioned: [Pg.1668]    [Pg.254]    [Pg.691]    [Pg.291]    [Pg.292]    [Pg.19]    [Pg.833]    [Pg.244]    [Pg.19]    [Pg.1668]    [Pg.254]    [Pg.691]    [Pg.291]    [Pg.292]    [Pg.19]    [Pg.833]    [Pg.244]    [Pg.19]    [Pg.46]    [Pg.320]    [Pg.320]    [Pg.9]    [Pg.161]    [Pg.171]    [Pg.413]    [Pg.444]    [Pg.63]    [Pg.870]    [Pg.1418]    [Pg.277]    [Pg.21]    [Pg.39]    [Pg.19]    [Pg.85]    [Pg.413]    [Pg.573]    [Pg.107]    [Pg.264]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



Anhydrides aldehydes

To anhydrides

© 2024 chempedia.info