Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical techniques, concentration

The flame must dry, vaporize, and atomize the sample in a reproducible manner with respect to both space and time. Unlike titrimetric and gravimetric analysis, atomic absorption spectrometry is a secondary analytical technique. Concentrations are determined by comparing the absorbance values obtained for samples with those obtained for standards of known determinant concentrations. It is very important, therefore, that samples and standards are always atomized with the same efficiency to produce a cloud of atomic vapour of highly reproducible geometry. If samples and standards behave differently, errors will result. [Pg.13]

A technique in which the signal is proportional to the analyte s concentration also called instrumental techniques. [Pg.38]

For a concentration technique the relationship between the measured signal and an analyte s concentration is given by equation 4.5... [Pg.67]

Two frequently encountered analytical problems are (1) the presence of matrix components interfering with the analysis of the analyte and (2) the presence of analytes at concentrations too small to analyze accurately. We have seen how a separation can be used to solve the former problem. Interestingly, separation techniques can often be used to solve the second problem as well. For separations in which a complete recovery of the analyte is desired, it may be possible to transfer the analyte in a manner that increases its concentration. This step in an analytical procedure is known as a preconcentration. [Pg.223]

The potentiometric determination of an analyte s concentration is one of the most common quantitative analytical techniques. Perhaps the most frequently employed, routine quantitative measurement is the potentiometric determination of a solution s pH, a technique considered in more detail in the following discussion. Other areas in which potentiometric applications are important include clinical chemistry, environmental chemistry, and potentiometric titrations. Before considering these applications, however, we must first examine more closely the relationship between cell potential and the analyte s concentration, as well as methods for standardizing potentiometric measurements. [Pg.485]

In potentiometry, the potential of an electrochemical cell under static conditions is used to determine an analyte s concentration. As seen in the preceding section, potentiometry is an important and frequently used quantitative method of analysis. Dynamic electrochemical methods, such as coulometry, voltammetry, and amper-ometry, in which current passes through the electrochemical cell, also are important analytical techniques. In this section we consider coulometric methods of analysis. Voltammetry and amperometry are covered in Section 1 ID. [Pg.496]

The pH must be kept at 7.0—7.2 for this method to be quantitative and to give a stable end poiut. This condition is easily met by addition of soHd sodium bicarbonate to neutralize the HI formed. With starch as iudicator and an appropriate standardized iodine solution, this method is appHcable to both concentrated and dilute (to ca 50 ppm) hydraziue solutious. The iodiue solutiou is best standardized usiug mouohydraziuium sulfate or sodium thiosulfate. Using an iodide-selective electrode, low levels down to the ppb range are detectable (see Electro analytical techniques) (141,142). Potassium iodate (143,144), bromate (145), and permanganate (146) have also been employed as oxidants. [Pg.287]

Other analytical techniques ate also available for the determination of maleic anhydride sample purity. For example, maleic anhydride content can be determined by reacting it with a known excess of aniline [62-53-3] in an alcohol mixture (170). The solution is then titrated with an acid to determine the amount of unconsumed aniline. This number is then used to calculate the amount of maleic anhydride reacted and thus its concentration. Another method of a similar type has also been reported (171). [Pg.459]

Ion-specific electrodes can be used for the quantitative determination of perchlorates in the parts per million (ppm) range (109) (see Electro ANALYTICAL techniques). This method is linear over small ranges of concentration, and is best appHed in analyzing solutions where interferences from other ionic species do not occur. [Pg.68]

The Ni and V concentrated into the vacuum resid appear to occur in two forms. Erom 10 to 14% of each of these two metals can be distilled in the 565—705°C boiling range, where they exhibit the strong visible Soret bands associated with the porphyrin stmcture. This tetrapyrrole stmcture (48,49), possibly derived from ancient chlorophyll, has been confirmed by a variety of analytical techniques. [Pg.172]

Instmmental methods are useful for the determination of the total silver ia a sample, but such methods do not differentiate the various species of silver that may be present. A silver ion-selective electrode measures the activity of the silver ions present ia a solution. These activity values can be related to the concentration of the free silver ion ia the solution. Commercially available silver ion-selective electrodes measure Ag+ down to 10 flg/L, and special silver ion electrodes can measure free silver ion at 1 ng/L (27) (see Electro analytical techniques). [Pg.91]

Because of the increasing emphasis on monitoring of environmental cadmium the detemiination of extremely low concentrations of cadmium ion has been developed. Table 2 Hsts the most prevalent analytical techniques and the detection limits. In general, for soluble cadmium species, atomic absorption is the method of choice for detection of very low concentrations. Mobile prompt gamma in vivo activation analysis has been developed for the nondestmctive sampling of cadmium in biological samples (18). [Pg.393]

Tritium is readily detectable because of its radioactivity. Under certain conditions concentrations as low as 370 )-lBq/mL (10 //Ci/mL) can be detected. Most detection devices and many analytical techniques exploit the ioni2ing effect of the tritium P-decay as a principle of operation (62,63). [Pg.15]

The very low Hg concentration levels in ice core of remote glaciers require an ultra-sensitive analytical technique as well as a contamination-free sample preparation methodology. The potential of two analytical techniques for Hg determination - cold vapour inductively coupled plasma mass spectrometry (CV ICP-SFMS) and atomic fluorescence spectrometry (AFS) with gold amalgamation was studied. [Pg.171]

There ai e noted the most convenient, simple and chip methods, which ensure the high quality of specimens and can be easily combined with different techniques for analytical pre-concentration of impurities. In particulaidy, it is proposed to make specimens in the form of gel, film or glass in the case of XRF analysis of concentrates obtained by low-temperature crystallization of aqueous solutions. One can prepai e film or organogel specimens from organic concentrates obtained by means of extraction of impurities by organic solvent. Techniques for XRF analysis of drinking, natural and wastewater using considered specimens ai e adduced. [Pg.252]

Hundreds of chemical species are present in urban atmospheres. The gaseous air pollutants most commonly monitored are CO, O3, NO2, SO2, and nonmethane volatile organic compounds (NMVOCs), Measurement of specific hydrocarbon compounds is becoming routine in the United States for two reasons (1) their potential role as air toxics and (2) the need for detailed hydrocarbon data for control of urban ozone concentrations. Hydrochloric acid (HCl), ammonia (NH3), and hydrogen fluoride (HF) are occasionally measured. Calibration standards and procedures are available for all of these analytic techniques, ensuring the quality of the analytical results... [Pg.196]

Several manual and continuous analytical techniques are used to measure SO2 in the atmosphere. The manual techniques involve two-stage sample collection and measurement. Samples are collected by bubbling a known volume of gas through a liquid collection medium. Collection efficiency is dependent on the gas-liquid contact time, bubble size, SO2 concentration, and SO2 solubility in the collection medium. The liquid medium contains chemicals which stabilize SO2 in solution by either complexation or oxidation to a more stable form. Field samples must be handled carefully to prevent losses from exposure to high temperatures. Samples are analyzed at a central laboratory by an appropriate method. [Pg.200]

An especially significant application of NRA is the measurement of quantified hydrogen depth profiles, which is difficult using all but a few other analytical techniques. Hydrogen concentrations can be measured to a few tens or hundreds of parts per million (ppm) and with depth resolutions on the order of 10 nm. [Pg.680]


See other pages where Analytical techniques, concentration is mentioned: [Pg.195]    [Pg.195]    [Pg.1844]    [Pg.195]    [Pg.388]    [Pg.543]    [Pg.610]    [Pg.770]    [Pg.24]    [Pg.134]    [Pg.5]    [Pg.395]    [Pg.509]    [Pg.512]    [Pg.324]    [Pg.171]    [Pg.88]    [Pg.246]    [Pg.106]    [Pg.195]    [Pg.429]    [Pg.217]    [Pg.174]    [Pg.53]    [Pg.192]    [Pg.199]    [Pg.202]    [Pg.144]    [Pg.622]    [Pg.671]    [Pg.32]    [Pg.188]    [Pg.306]   


SEARCH



Analyte concentration

Analytical concentration

Analytical techniques

Analytical techniques mass concentration

Analytical techniques, concentration determinations

Analytical techniques, concentration dissolution procedures

Analytical techniques, concentration isotopic abundances

Analytical techniques, concentration purification

Concentrating techniques

Concentration techniques

© 2024 chempedia.info