Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical procedure reversed phase

Table 3.42 lists the main factors influencing optimisation of SPE. When considering a specific extraction problem, many different aspects influence column selection, including nature of the analytes and of the sample matrix degree of purity required nature of major contaminants in the sample and final analytical procedure. Reversed-phase sorbents have nonpolar functional groups and preferentially retain nonpolar compounds. Thus, for a nonpolar analyte, to remove polar interferences using a polar sorbent phase, the sample... [Pg.126]

Silica gel, per se, is not so frequently used in LC as the reversed phases or the bonded phases, because silica separates substances largely by polar interactions with the silanol groups on the silica surface. In contrast, the reversed and bonded phases separate material largely by interactions with the dispersive components of the solute. As the dispersive character of substances, in general, vary more subtly than does their polar character, the reversed and bonded phases are usually preferred. In addition, silica has a significant solubility in many solvents, particularly aqueous solvents and, thus, silica columns can be less stable than those packed with bonded phases. The analytical procedure can be a little more complex and costly with silica gel columns as, in general, a wider variety of more expensive solvents are required. Reversed and bonded phases utilize blended solvents such as hexane/ethanol, methanol/water or acetonitrile/water mixtures as the mobile phase and, consequently, are considerably more economical. Nevertheless, silica gel has certain areas of application for which it is particularly useful and is very effective for separating polarizable substances such as the polynuclear aromatic hydrocarbons and substances... [Pg.93]

Figure 13.5 Schematic presentation of the procedure involved in coupled-column RPLC AS, autosampler C-1 and C-2, first and second separation columns, respectively M-1 and M-2, mobile phases S-1 and S2, interferences A, target analytes HV, high-pressure valve D, detector. Reprinted from Journal of Chromatography, A 703, E. A. Hogendoom and R van Zoonen, Coupled-column reversed-phase liquid cliromatography in environmental analysis , pp. 149-166, copyright 1995, with permission from Elsevier Science. Figure 13.5 Schematic presentation of the procedure involved in coupled-column RPLC AS, autosampler C-1 and C-2, first and second separation columns, respectively M-1 and M-2, mobile phases S-1 and S2, interferences A, target analytes HV, high-pressure valve D, detector. Reprinted from Journal of Chromatography, A 703, E. A. Hogendoom and R van Zoonen, Coupled-column reversed-phase liquid cliromatography in environmental analysis , pp. 149-166, copyright 1995, with permission from Elsevier Science.
The method for chloroacetanilide soil metabolites in water determines concentrations of ethanesulfonic acid (ESA) and oxanilic acid (OXA) metabolites of alachlor, acetochlor, and metolachlor in surface water and groundwater samples by direct aqueous injection LC/MS/MS. After injection, compounds are separated by reversed-phase HPLC and introduced into the mass spectrometer with a TurboIonSpray atmospheric pressure ionization (API) interface. Using direct aqueous injection without prior SPE and/or concentration minimizes losses and greatly simplifies the analytical procedure. Standard addition experiments can be used to check for matrix effects. With multiple-reaction monitoring in the negative electrospray ionization mode, LC/MS/MS provides superior specificity and sensitivity compared with conventional liquid chromatography/mass spectrometry (LC/MS) or liquid chromatography/ultraviolet detection (LC/UV), and the need for a confirmatory method is eliminated. In summary,... [Pg.349]

If simple sample pretreatment procedures are insufficient to simplify the complex matrix often observed in process mixtures, multidimensional chromatography may be required. Manual fraction collection from one separation mode and re-injection into a second mode are impractical, so automatic collection and reinjection techniques are preferred. For example, a programmed temperature vaporizer has been used to transfer fractions of sterols such as cholesterol and stigmasterol from a reversed phase HPLC system to a gas chromatographic system.11 Interfacing gel permeation HPLC and supercritical fluid chromatography is useful for nonvolatile or thermally unstable analytes and was demonstrated to be extremely useful for separation of compounds such as pentaerythritol tetrastearate and a C36 hydrocarbon standard.12... [Pg.91]

Salm et al.44 developed a high-throughput analytical method to measure cyclosporine in whole blood. They used a simple SPE procedure, followed by HPLC-MS/MS. An Agilent 1100 liquid chromatograph was coupled with an Agilent Zorbax Bonus C18 reversed-phase column (50 x 2.1 mm, 5 jt/rn particle size). The column temperature was maintained at 70°C in a column oven. The mobile phase consisted of 80% methanol and 20% 40mM ammonium acetate buffer (pH 5.1) delivered isocratically at a flow of 0.4 mL/min. D12 cyclosporine was the IS. [Pg.309]

In order to study simultaneously the behaviour of parent priority surfactants and their degradation products, it is essential to have accurate and sensitive analytical methods that enable the determination of the low concentrations generally occurring in the aquatic environment. As a result of an exhaustive review of the analytical methods used for the quantification within the framework of the three-year research project Priority surfactants and their toxic metabolites in wastewater effluents An integrated study (PRISTINE), it is concluded that the most appropriate procedure for this purpose is high-performance (HP) LC in reversed phase (RP), associated with preliminary techniques of concentration and purification by solid phase extraction (SPE). However, the complex mixtures of metabolites and a lack of reference standards currently limit the applicability of HPLC with UV- or fluorescence (FL-) detection methods. [Pg.25]

An analytical procedure that quantifies the total AE concentration resolved by alkyl chain length for various environmental matrices (influent, effluent, and river water) was developed by Di Corcia et al. [41]. The method utilises a reverse-phase column to extract and concentrate AE from surface waters and wastewaters and utilises strong anionic and cationic exchange columns to remove potential interferences. Samples are passed through the RP extraction column (Ci). AE and potential anionic and cationic interferences are eluted from the Ci column and passed directly through the SAX and SCX. The SAX and SCX columns retain anionic and cationic materials while non-ionic AE are not retained. Recovery of AE from influent, treatment plant effluent, and river water is quantitative (65—102%) over a range of concentrations for all matrices. [Pg.431]

Attention has been given to the analysis of polynuclear uiomutic hydrocarbons. Christensen and May (496) have discussed the use of a variety of detectors with regard to selectivity and sensitivity in such analytical work. A reversed phase procedure for the analysis of benz[a3pyrene in coal tar pitch has been reported [Pg.319]

Cleanup by solid-phase extraction has also been widely employed since it is a simple, fairly inexpensive, and easy-to-perform procedure for purification of the crude extract. The use of disposable solid-phase extraction columns is currently part of most, if not all, modern analytical methods for the determination of anthelminthics in biological matrices at residue levels. Both normal-phase columns based on silica (333-335, 340, 367, 372), alumina (346, 373-375), or aminopropyl (339, 365, 370) materials, and reversed-phase columns based on Ci8 (319, 323, 324, 328, 344, 346, 347, 349-351, 357-359, 364, 367) and cyclohexyl (329, 332, 360) sorbents have been described in analytical applications. [Pg.1009]


See other pages where Analytical procedure reversed phase is mentioned: [Pg.368]    [Pg.378]    [Pg.121]    [Pg.234]    [Pg.119]    [Pg.259]    [Pg.91]    [Pg.92]    [Pg.308]    [Pg.533]    [Pg.708]    [Pg.39]    [Pg.121]    [Pg.541]    [Pg.213]    [Pg.51]    [Pg.41]    [Pg.113]    [Pg.215]    [Pg.227]    [Pg.213]    [Pg.818]    [Pg.8]    [Pg.189]    [Pg.112]    [Pg.61]    [Pg.398]    [Pg.399]    [Pg.188]    [Pg.766]    [Pg.133]    [Pg.877]    [Pg.963]    [Pg.1078]    [Pg.362]    [Pg.165]    [Pg.168]    [Pg.411]    [Pg.427]    [Pg.458]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Analyte phases

Analytic Procedures

Analytical procedures

© 2024 chempedia.info