Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical development report transfer

It is extremely beneficial to have a comprehensive analytical development report that provides the scope of each analytical method, chronology, rationale for changes, and equivalency or superiority of the optimized methods. Usually, the analytical development report for each method, along with the validation report, facilitates the technology transfer process. [Pg.8]

A pilot production is at about a lOOx level in general, the full scale-batch and the technology transfer at this stage should comprise preformulation information, product development report, and product stability and analytical methods reports. This is the time to finalize the batch production documentation for the lOOx level. The objectives of prevalidation trials at this stage are to qualify and optimize the process in full-scale production equipment and facilities. [Pg.41]

Compliauce—including GMP documents (e.g., validation reports, investigation reports, and annual product reviews), internal reports (e.g., technology transfer reports), and special development reports (summarizing history of product or chronology of critical issues). Research—usually prepared to record or transfer product history (e.g., analytical profiles), additional informational studies, non-GMP batch issues and investigations. [Pg.521]

Method Transfer. Method transfer involves the implementation of a method developed at another laboratory. Typically the method is prepared in an analytical R D department and then transferred to quahty control at the plant. Method transfer demonstrates that the test method, as mn at the plant, provides results equivalent to that reported in R D. A vaUdated method containing documentation eases the transfer process by providing the recipient lab with detailed method instmctions, accuracy and precision, limits of detection, quantitation, and linearity. [Pg.369]

To demonstrate the validity of an analytical method, data regarding working range/ calibration, recovery, repeatability, specificity and LOQ have to be provided for each relevant sample matrix. Most often these data have to be collected from several studies, e.g., from several validation reports of the developer of the method, the independent laboratory validation or the confirmatory method trials. If the intended use of a pesticide is not restricted to one matrix type and if residues are transferred via feedstuffs to animals and finally to foodstuffs of animal origin, up to 30 sets of the quality parameters described above are necessary for each analyte of the residue definition. Table 2 can be used as a checklist to monitor the completeness of required data. [Pg.102]

Quantitative analytical treatments of the effects of mass transfer and reaction within a porous structure were apparently first carried out by Thiele (20) in the United States, Dam-kohler (21) in Germany, and Zeldovitch (22) in Russia, all working independently and reporting their results between 1937 and 1939. Since these early publications, a number of different research groups have extended and further developed the analysis. Of particular note are the efforts of Wheeler (23-24), Weisz (25-28), Wicke (29-32), and Aris (33-36). In recent years, several individuals have also extended the treatment to include enzymes immobilized in porous media or within permselective membranes. The important consequence of these analyses is the development of a technique that can be used to analyze quantitatively the factors that determine the effectiveness with which the surface area of a porous catalyst is used. For this purpose we define an effectiveness factor rj for a catalyst particle as... [Pg.438]

Eventually the point will be reached at which the development of a product is complete the formulation is finalized, the equipment has been selected, the analytical methods are validated, the development transfer report has been issued, and the Preapproval Inspection (PAI) is anticipated. Now is the time to consider validation of both the manufacturing and cleaning processes. Although some process validation may have also been completed or a process validation protocol may have been prepared and approved, it is likely that very little has been finished that would enable us to state that the cleaning process is fully validated. [Pg.508]

A PET reporter site tethered to the rim of the bucket allows the chemosensing strategy of Scheme 12 to be developed. In this construct, the bucket simply acts as a scaffold for the PET reporter site. The receptor is not required for analyte recognition and large changes in conformation are not required for signal transduction. Rather, electron transfer from a lone pair to the frontier orbitals of the excited reporter quenches luminescence, which is recovered by the interaction of the analyte with the lone pair (see Fig. 6). [Pg.56]

Numerous extraction methods and techniques have been developed and reported, especially if one takes into account the variety of modifications. The most common and simple general classification of these methods is similar to that introduced in chromatography and based on the kind of phase to which the analyte is transferred. One can distinguish the extractions as liquid, solid, gas, and supercritical fluid phase extractions. More precise description specifies the two phases between which the analyte is distributed (e.g., liquid-liquid or solid-liquid [leaching] extractions). The latter methods are all called solvent extraction. [Pg.124]


See other pages where Analytical development report transfer is mentioned: [Pg.495]    [Pg.518]    [Pg.549]    [Pg.450]    [Pg.28]    [Pg.23]    [Pg.75]    [Pg.126]    [Pg.133]    [Pg.56]    [Pg.613]    [Pg.1520]    [Pg.186]    [Pg.80]    [Pg.426]    [Pg.41]    [Pg.260]    [Pg.419]    [Pg.454]    [Pg.61]    [Pg.152]    [Pg.249]    [Pg.305]    [Pg.691]    [Pg.186]    [Pg.525]    [Pg.50]    [Pg.270]    [Pg.88]    [Pg.255]    [Pg.263]    [Pg.394]    [Pg.397]    [Pg.58]    [Pg.256]    [Pg.270]    [Pg.291]    [Pg.274]    [Pg.345]    [Pg.305]    [Pg.142]   
See also in sourсe #XX -- [ Pg.523 , Pg.524 ]




SEARCH



Analyte transfer

Analytical development report

Development reports

© 2024 chempedia.info