Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric amplification

Vogelbacker, H.H., Getts, R.C., Tian, N., Labaczewski, R., Nilsen, T.W. (1997) DNA dendrimers Assembly and signal amplification. Polymeric materials science and engineering. ACS Spring Meeting, San Francisco, CA, 458-460. [Pg.1125]

Dry-Film Resists Based on Radical Photopolymerization. Photoinitiated polymerization (PIP) is widely practiced ia bulk systems, but special measures must be taken to apply the chemistry ia Hthographic appHcations. The attractive aspect of PIP is that each initiator species produced by photolysis launches a cascade of chemical events, effectively forming multiple chemical bonds for each photon absorbed. The gain that results constitutes a form of "chemical amplification" analogous to that observed ia silver hahde photography, and illustrates a path for achieving very high photosensitivities. [Pg.117]

We have designed not only polymerized flavonoids but also flavonoid conjugates of various polyamines, in consideration of extension of the amplification of physiological properties of the flavonoids. Polymeric flavonoids were synthesized by the enzymatic oxidative coupling. ... [Pg.240]

GeneReleaser set of proprietary polymeric materials, which facilitates the DNA release from cells or other genetic materials, suitable for PCR amplification leading to a PCR ready DNA/RNA protocol made in about 5 min. [Pg.235]

A number of new resist materials which provide very high sensitivities have been developed in recent years [1-3]. In general, these systems owe their high sensitivity to the achievement of chemical amplification, a process which ensures that each photoevent is used in a multiplicative fashion to generate a cascade of successive reactions. Examples of such systems include the electron-beam induced [4] ringopening polymerization of oxacyclobutanes, the acid-catalyzed thermolysis of polymer side-chains [5-6] or the acid-catalyzed thermolytic fragmentation of polymer main-chains [7], Other important examples of the chemical amplification process are found in resist systems based on the free-radical photocrosslinking of acrylated polyols [8]. [Pg.74]

A comparison of the covalent connectivity associated with each of these architecture classes (Figure 1.7) reveals that the number of covalent bonds formed per step for linear and branched topology is a multiple (n = degree of polymerization) related to the monomer/initiator ratios. In contrast, ideal dendritic (Class IV) propagation involves the formation of an exponential number of covalent bonds per reaction step (also termed G = generation), as well as amplification of both mass (i.e. number of branch cells/G) and terminal groups, (Z) per generation (G). [Pg.13]

It is apparent that both the core multiplicity (Nc) and branch cell multiplicity (Nh) determine the precise number of terminal groups (Z) and mass amplification as a function of generation (G). One may view those generation sequences as quantized polymerization events. The assembly of reactive monomers [48, 78], branch cells [48, 83, 89] or dendrons [85, 90] around atomic or molecular cores... [Pg.25]

Their studies involved the partial polymerization of NCAs of mixtures of specific amino adds having known e.e.s, followed by determination of the e.e.s of the amino adds in both the resulting polypeptides and in the residual unreacted NCA monomers. [94] In a typical experiment it was found that when an optically impure leucine NCA monomer having an l > d e.e. of 31.2% was polymerized to the extent of 52 % to the helical polyleucine peptide, the e.e. of the polymer was enhanced to 45.4 %, an increase of 14.2 %. In the same experiment the e.e. of the unreacted leucine NCA monomer was depleted to a similar extent. Analogous experiments with valine NCAs of known e.e.s, however, led to a reverse effect, namely, the preferential incorporation of the racemate rather than one enantiomer into the growing polyvaline peptide. This finding was interpreted to be the result of the fact that polyvaline consists of (3-sheets rather than a-helices, emphasizing that the Wald mechanism applies only to a-helix polymers. At about the same time Brach and Spach [95] showed that, under proper conditions, (3-sheet polymers could also be implicated in the amplification of amino add e.e.s. [Pg.187]

These model experiments involving e.e. amplification of amino adds during polymerization admittedly need prebiotically unrealistic substrates as well as carefully contrived experimental conditions. Nevertheless, it is noteworthy that both secondary structures of proteins, a-helices, and P-sheets have been found capable of acting stereoselectively to provide e.e. enhancements during these model polymerizations. [Pg.188]

These schemes expressly induded the idea that clays and porous minerals adsorbed, absorbed, and ultimately concentrated any extant organics from a dilute oceanic broth on the early Earth. This idea is critical because it is difficult to imagine that the kind of polymerization and chiral amplification processes discussed above could or would have occurred in a water solution not much more than millimolar in organics. [131]... [Pg.194]

The metal-catalyzed amplification of e.e. in small molecules, demonstrated by Soai and coworkers, along with the chiral enrichment of amino arid polymers by sequential polymerization/depolymerization steps, have shown that small enantiomeric excesses in nearly racemic mixtures can be reactively amplified to produce chiral dominance. These real chemical systems, which include plausible prebiotic reactions, experimentally demonstrate the principle of the chiral amplification of a spontaneously broken chiral symmetry in a dynamic and authentic chemical milieu. Therefore amplification to dominance of a small chiral excess of both small and polymeric molecules can be credibly incorporated into an origin-of-life model. [Pg.197]

The continuous availability of trillions of independent microreactors greatly multiplied the initial mixture of extraterrestrial organics and hydrothermal vent-produced chemicals into a rich variety of adsorbed and transformed materials, including lipids, amphiphiles, chiral metal complexes, amino add polymers, and nudeo-tide bases. Production and chiral amplification of polypeptides and other polymeric molecules would be induced by exposure of absorbed amino adds and organics to dehydration/rehydration cydes promoted by heat-flows beneath a sea-level hydro-thermal field or by sporadic subaerial exposure of near-shore vents and surfaces. In this environment the e.e. of chiral amino adds could have provided the ligands required for any metal centers capable of catalyzing enantiomeric dominance. The auto-amplification of a small e.e. of i-amino adds, whether extraterrestrially delivered or fluctuationally induced, thus becomes conceptually reasonable. [Pg.199]

These possibilities rectify the proposed subsequent appearance and amplification of chiral autocatalytic molecules and hypercydes. [190] Any autocatalytic systems would propagate [191] throughout an extensive adjoining hydrated porous network already rich in layered amphiphiles, lipids, polymeric materials, amino acids, thiols, and so forth. In addition, amphiphiles are known to be organized into lipid membranes by interaction with the inner surfaces of porous minerals. [136] It is a small organizational jump from these membranes to frilly formed lipid vesides. [Pg.199]

A recent example of diasteromeric amplification with achiral guests and a racemic library can be seen in the work of Iwasawa and coworkers. The library members consisted of a racemic polyol and l,4-benzenedi(boronic acid) [2], When these components were mixed in an equimolar ratio in methanol, a precipitate formed, which was insoluble in other organic solvents and thought to be a polymeric boronate. However, when the library members were mixed in the presence of toluene or benzene, a precipitate again formed, but it was soluble in several (nonprotic) organic solvents where boronic ester exchange is slow. With toluene a [2 2] complex of the polyol and diboronic acid formed, as evidenced by NMR and FAB-MS data. X-ray crystallography confirmed that a cyclic structure formed with... [Pg.157]

Note 1 Chemical amplification can lead to a change in structure and by consequence to a change in the physical properties of a polymeric material. [Pg.238]

Kurisawa, M. et al.. Amplification of antioxidant activity and xanthine oxidase inhibition of catechin by enzymatic polymerization. Biomacromolecules, 4, 469, 2003. [Pg.465]

Dendritic polymers with enhanced amplification and interior functionality were prepared by Tomalia et al. (3) by slow step-growth polymerization techniques including polyimine formation followed by rapid ring-opening reactions. [Pg.239]

In this relation, 2C2 provides a correction for departure of the polymeric network from ideality, which results from chain entanglements and from the restricted extensibility of the elastomer strands. For filled vulcanizates, this equation can still be applied if it can be assumed that the major function of the dispersed phase is to increase the effective strain of the rubber matrix. In other words, because of the rigidity of the filler, the strain locally applied to the matrix may be larger than the measured overall strain. Various strain amplification functions have been proposed. Mullins and Tobin33), among others, suggested the use of the volume concentration factor of the Guth equation to estimate the effective strain U in the rubber matrix ... [Pg.118]

Amplification. See Chirality amplification Anhydrides, ring opening, 331 Anionic polymerization methyl sorbate, 174 trityl acrylate, 181 Annelation, Robinson method, 336 Antibiotics, 8, 44, 80 Antibodies, 12... [Pg.192]

Organometallic compounds asymmetric catalysis, 11, 255 chiral auxiliaries, 266 enantioselectivity, 255 see also specific compounds Organozinc chemistry, 260 amino alcohols, 261, 355 chirality amplification, 273 efficiency origins, 273 ligand acceleration, 260 molecular structures, 276 reaction mechanism, 269 transition state models, 264 turnover-limiting step, 271 Orthohydroxylation, naphthol, 230 Osmium, olefin dihydroxylation, 150 Oxametallacycle intermediates, 150, 152 Oxazaborolidines, 134 Oxazoline, 356 Oxidation amines, 155 olefins, 137, 150 reduction, 5 sulfides, 155 Oxidative addition, 5 amine isomerization, 111 hydrogen molecule, 16 Oxidative dimerization, chiral phenols, 287 Oximes, borane reduction, 135 Oxindole alkylation, 338 Oxiranes, enantioselective synthesis, 137, 289, 326, 333, 349, 361 Oxonium polymerization, 332 Oxo process, 162 Oxovanadium complexes, 220 Oxygenation, C—H bonds, 149... [Pg.196]


See other pages where Polymeric amplification is mentioned: [Pg.140]    [Pg.44]    [Pg.1312]    [Pg.23]    [Pg.216]    [Pg.248]    [Pg.268]    [Pg.90]    [Pg.296]    [Pg.184]    [Pg.13]    [Pg.75]    [Pg.47]    [Pg.24]    [Pg.228]    [Pg.255]    [Pg.187]    [Pg.188]    [Pg.188]    [Pg.196]    [Pg.77]    [Pg.102]    [Pg.144]    [Pg.144]    [Pg.227]    [Pg.217]    [Pg.320]    [Pg.467]    [Pg.113]    [Pg.140]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



© 2024 chempedia.info