Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

AMP, biosynthesis

IMP is a branch point between synthesis of GMP and AMP (Figure 22.6). IMP is acted upon by adenylosuccinate synthetase in AMP biosynthesis and by IMP dehydrogenase in GMP biosynthesis. [Pg.654]

The regulation of mammalian adenylosuccinate synthetase is complicated. It is dependent on the isozyme content and levels in a given tissue as well as the effects of substrate and product levels. The two isozymes may have different metabolic roles either in AMP biosynthesis and interconversion, or in the functions of the purine nucleotide cycle. Most studies have considered kinetic parameters for the isolated enzyme and in only a few instances has regulation been studied in vivo. Sufficient information is available concerning the regulation of the basic isozyme in muscle to consider that enzyme in detail. Factors controlling the acidic isozyme are less clearly defined. [Pg.122]

The evidence suggested yeast adenylosuccinate synthetase catalyzed the first committed step in AMP biosynthesis and was also involved in the repression of synthesis of the early enzymes of the pathway. The mechanism by which this repression occurs remains unknown. Woods and co-workers (115,116) have isolated several prototrophic mutants of yeast defective in control of purine synthesis that are not allelic with adel2. Genetic analysis of these mutants suggested that the regulatory function of adenylosuccinate synthetase may be affected in conjunction with as many as three other gene products (116). [Pg.132]

The dual role of adenylosuccinate synthetase in purine nucleotide interconversions and in de novo AMP biosynthesis complicates studies of its regulation. There is evidence suggesting that in wild-type cells, both the de novo and the salvage pathways play an active role in the maintenance of appropriate ATP/GTP ratios (78). [Pg.136]

After incubation of fonnate-C with pigeon liver homc nates, adenylosuccinate was formed with a higher specific activity than IMP, which suggested that IMP may not be an obUgatory intermediate in AMP biosynthesis (161). This observation can be explained if aspartic acid and AICAR reacted and formed a condensation product which cleaved to an aminoimidazole carboxamidine ribonucleotide subsequent ring closure with a one-carbon donor would form adenylic acid without the participation of IMP. However, these observations have not been fully documented. [Pg.410]

DiaZepin Nucleosides. Four naturally occurring dia2epin nucleosides, coformycin (58), 2 -deoxycoformycin (59), adechlorin or 2 -chloro-2 -deoxycoformycin (60), and adecypenol (61), have been isolated (1—4,174,175). The biosynthesis of (59) and (60) have been reported to proceed from adenosine and C-1 of D-ribose (30,176,177). They are strong inhibitors of adenosine deaminase and AMP deaminase (178). Compound (58) protects adenosine and formycin (12) from deamination by adenosine deaminase. Advanced hairy cell leukemia has shown rapid response to (59) with or without a-or P-interferon treatment (179—187). In addition, (59) affects interleukin-2 production, receptor expression on human T-ceUs, DNA repair synthesis, immunosuppression, natural killer cell activity, and cytokine production (188—194). [Pg.124]

In fatty-acid biosynthesis, a carboxylic acid is activated by reaction with ATP to give an acyl adenylate, which undergoes nucleophilic acyi substitution with the — SH group or coenzyme A. (ATP = adenosine triphosphate AMP = adenosine monophosphate.)... [Pg.801]

The theoretical limits are 1.0 (all ATP) and 0 (all AMP) with a normal working range of 0.75 to 0.9. The involvement of energy charge in the integration and regulation of metabolism is considered further in die BIOTOL text entitled Biosynthesis and the Integration of Cell Metabolism. ... [Pg.123]

Condensation of CO2, ammonia, and ATP to form carbamoyl phosphate is catalyzed by mitochondrial carbamoyl phosphate synthase I (reaction 1, Figure 29-9). A cytosolic form of this enzyme, carbamoyl phosphate synthase II, uses glutamine rather than ammonia as the nitrogen donor and functions in pyrimidine biosynthesis (see Chapter 34). Carbamoyl phosphate synthase I, the rate-hmiting enzyme of the urea cycle, is active only in the presence of its allosteric activator JV-acetylglutamate, which enhances the affinity of the synthase for ATP. Formation of carbamoyl phosphate requires 2 mol of ATP, one of which serves as a phosphate donor. Conversion of the second ATP to AMP and pyrophosphate, coupled to the hydrolysis of pyrophosphate to orthophosphate, provides the driving... [Pg.245]

Since biosynthesis of IMP consumes glycine, glutamine, tetrahydrofolate derivatives, aspartate, and ATP, it is advantageous to regulate purine biosynthesis. The major determinant of the rate of de novo purine nucleotide biosynthesis is the concentration of PRPP, whose pool size depends on its rates of synthesis, utilization, and degradation. The rate of PRPP synthesis depends on the availabihty of ribose 5-phosphate and on the activity of PRPP synthase, an enzyme sensitive to feedback inhibition by AMP, ADP, GMP, and GDP. [Pg.294]

Hepatic purine nucleotide biosynthesis is stringently regulated by the pool size of PRPP and by feedback inhibition of PRPP-glutamyl amidotransferase by AMP and GMP. [Pg.301]

The biosynthesis of adenosine is theoretically controlled by several processes namely (1) the biosynthesis of adenosine from AMP by 5 -nucleotidase [EC 3.1.3.5], (2) from S-adenosyl homocysteine by S-adenosyl homocystine hydrolase [EC 3.3.1.1], (3) the metabolism of adenosine to AMP by adenosine kinase [EC 2.7.1.20], and (4) to inosine by adenosine deaminase (ADA) [EC 3.5.4.2], Interestingly, both 5 -nucleotidase and ADA activities were found to be highest in the leptomeninges of rat brain in contrast, the adenosine kinase activity was widely distributed throughout the brain parenchyma, which has negligible ADA activity... [Pg.372]

Cyclic AMP Stimulation or inhibition of the biosynthesis of the second messenger cyclic adenosine-S jS -monophosphate occurs through the activation of Gs or G protein-coupled neurotransmitter receptors, respectively. [Pg.240]

Soon after this report, the group of M. Yaros, also working in Boulder, was able to demonstrate ribozyme activity with a much higher performance (Illangsekare, 1995). Using a random mixture of many billions of RNA sequences, they selected one species which was able to catalyse the aminoacyl synthesis. In other words, the selected ribozyme aminoacylated its 2 (3 ) end when offered phenylalanyl-AMP the addition of Mg2+ and Ca2+ was necessary. The catalysed reaction was about 105 times faster than in the absence of ribozyme. Thus the group was able to show that a fundamental reaction of contemporary protein biosynthesis can also be catalysed by a ribozyme (see Sect. 5.3.2). The assiduous search for further activities continues. [Pg.163]

Phosphoribosylpyrophosphate (PRPP) synthetase is one of the very few enzymes which transfer a pyrophosphoryl group from ATP in one step. When the synthesis is carried out in lsO-enriched water, lsO is incorporated into the PRPP, but not into AMP.91 The lsO in the PRPP arises from a pre-exchange between the H2180 and the ribose phosphate, and hence the results confirm that fission of the /5-P—O bond takes place. PRPP and ATP are starting materials in the biosynthesis of histidine, and Ai-(5 -phospho-D-ribosyl)adenosine triphosphate (29) is an intermediate. The... [Pg.146]

Protein biotinylation is catalyzed by biotin protein ligase (BPL). In the active site of the enzyme, biotin is activated at the expense of ATP to form AMP-biotin the activated biotin can then react with a nucleophile on the targeted protein. BPL transfers the biotin to a special lysine on biotin carboxyl carrier protein (BCCP), a subunit of AcCoA carboxylase (Scheme 21). Biotinylation of BCCP is very important in fatty acid biosynthesis, starting the growth of the fatty acid with AcCoA carboxylase to generate malonyl-CoA. Recently the crystal structures of mutated BPL and BCCP have been solved together with biotin and ATP to get a better idea of how the transfer fiinctions. ... [Pg.455]

Orotic acid added to rat diet also provokes an. excessive biosynthesis of porphyrins in liver, erythrocytes and bone marrow. Administration of adenine monophosphate (AMP) counteracted this effect of orotic acid intoxication [165]. Haemorrhagic renal necrosis in rats, caused by choline deficiency, can be relieved by orotic acid [166], Simultaneous supplementation of the diet with adenine does not influence the protective effect of orotic acid. It has been suggested that orotic acid may lower the body requirement for choline through a metabolic interaction—orotic acid may stimulate the cytidine phosphate choline pathway of lecthin biosynthesis [166]. [Pg.289]

The biosynthesis of the purines is also regulated by feedback inhibition. ADP and GDP inhibit the formation of PRRPP from ri-bose-5 -phosphate. Similarly, step 2a is inhibited by AMP and GMP. [Pg.188]

As the first committed step in the biosynthesis of AMP from IMP, AMPSase plays a central role in de novo purine nucleotide biosynthesis. A 6-phosphoryl-IMP intermediate appears to be formed during catalysis, and kinetic studies of E. coli AMPSase demonstrated that the substrates bind to the enzyme active sites randomly. With mammalian AMPSase, aspartate exhibits preferred binding to the E GTPTMP complex rather than to the free enzyme. Other kinetic data support the inference that Mg-aspartate complex formation occurs within the adenylosuccinate synthetase active site and that such a... [Pg.36]

The level of cyclic AMP (cAMP) is increased by nitrogen starvation this triggers expression of ligninolytic activity and veratryl alcohol biosynthesis (40). [Pg.421]

At one point or another during protein synthesis, several other proteins will be associated with the ribosome. These include factors that help in initiating the synthetic process, others that help in elongating the peptide chain, and yet others that play a role in terminating the synthesis of a peptide chain. Beyond this, there is also the mRNA to consider, as well as the aminoacylated tRNA molecules. Finally, since protein biosynthesis consumes energy, there is the hydrolysis of ATP and GTP to AMP and GDP, respectively, by the ribosome. [Pg.21]

Three major feedback mechanisms cooperate in regulating the overall rate of de novo purine nucleotide synthesis and the relative rates of formation of the two end products, adenylate and guanylate (Fig. 22-35). The first mechanism is exerted on the first reaction that is unique to purine synthesis—transfer of an amino group to PRPP to form 5-phosphoribosylamine. This reaction is catalyzed by the allosteric enzyme glutamine-PRPP amidotransferase, which is inhibited by the end products IMP, AMP, and GMP. AMP and GMP act synergisti-cally in this concerted inhibition. Thus, whenever either AMP or GMP accumulates to excess, the first step in its biosynthesis from PRPP is partially inhibited. [Pg.866]

In the second control mechanism, exerted at a later stage, an excess of GMP in the cell inhibits formation of xanthylate from inosinate by IMP dehydrogenase, without affecting the formation of AMP (Fig. 22-35). Conversely, an accumulation of adenylate inhibits formation of adenylosuccinate by adenylosuccinate synthetase, without affecting the biosynthesis of GMP. In the third mechanism, GTP is required in the conversion of IMP to AMP (Fig. 22-34, step (T)), whereas ATP is required for conversion of IMP to GMP (step (4)), a reciprocal arrangement that tends to balance the synthesis of the two ribonucleotides. [Pg.866]


See other pages where AMP, biosynthesis is mentioned: [Pg.159]    [Pg.159]    [Pg.254]    [Pg.202]    [Pg.118]    [Pg.405]    [Pg.817]    [Pg.78]    [Pg.20]    [Pg.130]    [Pg.104]    [Pg.168]    [Pg.21]    [Pg.384]    [Pg.384]    [Pg.1742]    [Pg.223]    [Pg.337]    [Pg.282]    [Pg.535]    [Pg.188]    [Pg.27]    [Pg.588]    [Pg.17]    [Pg.606]    [Pg.864]    [Pg.866]   
See also in sourсe #XX -- [ Pg.74 ]




SEARCH



5 -AMP

© 2024 chempedia.info