Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium acid formate iodide

Synonym Ammonia Water Amfbnioformaldehyde Ammonium Acetate Ammonium Acid Fluoride Ammonium Amidosulfonate Ammonium Amidosulphate Ammonium Benzoate Ammonium Bicarbonate Ammonium Bichromate Ammonium Bifluoride Ammonium Carbonate Ammonium Chloride Ammonium Citrate Ammonium Citrate, Dibasic Ammonium Decaborate Octahydrate Ammonium Dichromate Ammonium Disulfate-Nickelate (II) Ammonium Ferric Citrate Ammonium Ferric Oxalate Trihydrate Ammonium Ferrous Sulfate Ammonium Fluoride Ammonium Fluosilicate Ammonium Formate Ammonium Gluconate Ammonium Hydrogen Carbonate Ammonium Hydrogen Fluoride Ammonium Hydrogen Sulfide Solution Ammonium Hydroxide Ammonium Hypo Ammonium Hyposulfite Ammonium Iodide Ammonium Iron Sulfate Ammonium Lactate Ammonium Lactate Syrup Ammonium Lauryl Sulfate Ammonium Molybdate Ammonium Muriate Ammonium Nickel Sulfate Ammonium Nitrate Ammonium Nitrate-Urea Solution Ammonium Oleate... [Pg.21]

I-A1ON0-2-NAPHIH0L-4-SULE0NIC acid, 11, 72 16, 91 17, 91 Aminonaphtholsulfonic acids, coupling to form azo dyes, 16,16 p-Aminophenol, 16, 39 Aminopiperole, 16, 6 /3-Ahinopropionic acid, 16, 1 4-Aminoveratrole, 16, 4 Ammonium dichromate, 16, 74 Ammonium formate, 17, 77 Ammonium thiocyanate, 16, 74 Ammonium vanadate, 13, 1 to w-Amyl alcohol, IS, 17 hri.-Amyl alcohol, 13, 68 -Amylbenzene, 10, 4 -Amyl borate, 13, 17 -Amyl bromide, 16, 41 iso-Amyl iodide, 13, 62 n-Amyl iodide, 13, 62 n-Amybnagnesium bromide, 16, 41... [Pg.90]

Sulfoxides without amino or carboxyl groups have also been resolved. Compound 3 was separated into enantiomers via salt formation between the phosphonic acid group and quinine . Separation of these diastereomeric salts was achieved by fractional crystallization from acetone. Upon passage through an acidic ion exchange column, each salt was converted to the free acid 3. Finally, the tetra-ammonium salt of each enantiomer of 3 was methylated with methyl iodide to give sulfoxide 4. The levorotatory enantiomer was shown to be completely optically pure by the use of chiral shift reagents and by comparison with a sample prepared by stereospecific synthesis (see Section II.B.l). The dextrorotatory enantiomer was found to be 70% optically pure. [Pg.57]

When iodine is dissolved in hydriodic acid or a soln. of a metallic iodide, there is much evidence of chemical combination, with the formation of a periodide. A. Baudrimont objected to the polyiodide hypothesis of the increased solubility of iodine in soln. of potassium iodide, because he found that an extraction with carbon disulphide removed the iodine from the soln. but S. M. Jorgensen showed that this solvent failed to remove the iodine from an alcoholic soln. of potassium iodide and iodine in the proportion KI I2, and an alcoholic soln. of potassium iodide decolorized a soln. of iodine in carbon disulphide. The hypothesis seemed more probable when, in 1877, G. S. Johnson isolated cubic crystals of a substance with the empirical formula KI3 by the slow evaporation of an aqueous-alcoholic soln. of iodine and potassium iodide over sulphuric acid. There is also evidence of the formation of analogous compounds with the other halides. The perhalides or poly halides—usually polyiodides—are products of the additive combination of the metal halides, or the halides of other radicles with the halogen, so. that the positive acidic radicle consists of several halogen atoms. The polyiodides have been investigated more than the other polyhalides. The additive products have often a definite physical form, and definite physical properties. J. J. Berzelius appears to have made the first polyiodide—which he called ammonium bin-iodide A. Geuther called these compounds poly-iodides and S. M. Jorgensen, super-iodides. They have been classified 1 as... [Pg.233]

Cassiterite-bearing samples are attacked by volatilisation with ammonium iodide, and the sublimate containing the tin is dissolved in dilute tartaric acid. The solution can be used for normal nebulisation into an air—acetylene flame for high levels, or for hydride formation for low levels of tin. Interfering elements are not volatilised [14]. [Pg.281]


See other pages where Ammonium acid formate iodide is mentioned: [Pg.606]    [Pg.293]    [Pg.57]    [Pg.480]    [Pg.175]    [Pg.115]    [Pg.312]    [Pg.100]    [Pg.14]    [Pg.205]    [Pg.256]    [Pg.300]    [Pg.443]    [Pg.619]    [Pg.394]    [Pg.587]    [Pg.138]    [Pg.90]    [Pg.124]    [Pg.136]    [Pg.164]    [Pg.198]    [Pg.201]    [Pg.201]    [Pg.224]    [Pg.259]    [Pg.602]    [Pg.607]    [Pg.609]    [Pg.609]    [Pg.815]    [Pg.822]    [Pg.827]    [Pg.982]    [Pg.1024]    [Pg.1075]    [Pg.310]    [Pg.155]    [Pg.19]    [Pg.220]    [Pg.110]    [Pg.215]   
See also in sourсe #XX -- [ Pg.26 , Pg.27 ]




SEARCH



Ammonium acid formate

Ammonium formate

Ammonium formation

Ammonium iodid

Ammonium iodide

© 2024 chempedia.info