Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonia purity

The PPM ammonia remaining in the bottoms product stream of the stripper tower are shown in Figure 4 as a function of the kilograms of steam injected into the tower. The number of theoretical stages used is shown as a cross-parameter. What is observed is that in a practical sense, the Wilson and Mason-Kao methods yield essentially the same ammonia purity in the stripped water product, whereas very substantial differences are obtained when the classical van Krevelen correlation is applied to design the wastewater stripper. [Pg.8]

Two-Step Process. The significant advantage of the two-step process is that it only requkes commercial-grade methyl formate and ammonia. Thus the cmde product leaving the reactor comprises, in addition to excess starting materials, only low boiling substances, which are easily separated off by distillation. The formamide obtained is of sufficient purity to meet all quaUty requkements without recourse to the costiy overhead distillation that is necessary after the dkect synthesis from carbon monoxide and ammonia. [Pg.508]

Membrane modules have found extensive commercial appHcation in areas where medium purity hydrogen is required, as in ammonia purge streams (191). The first polymer membrane system was developed by Du Pont in the early 1970s. The membranes are typically made of aromatic polyaramide, polyimide, polysulfone, and cellulose acetate supported as spiral-wound hoUow-ftber modules (see Hollow-FIBERMEMBRANEs). [Pg.428]

Ma.nufa.cture. Several nickel oxides are manufactured commercially. A sintered form of green nickel oxide is made by smelting a purified nickel matte at 1000°C (30) a powder form is made by the desulfurization of nickel matte. Black nickel oxide is made by the calcination of nickel carbonate at 600°C (31). The carbonate results from an extraction process whereby pure nickel metal powder is oxidized with air in the presence of ammonia (qv) and carbon dioxide (qv) to hexaamminenickel(TT) carbonate [67806-76-2], [Ni(NH3)3]C03 (32). Nickel oxides also ate made by the calcination of nickel carbonate or nickel nitrate that were made from a pure form of nickel. A high purity, green nickel oxide is made by firing a mixture of nickel powder and water in air (25). [Pg.9]

A newer approach developed for producing commercial quantities of high purity AP (8,36) involves the electrolytic conversion of chloric acid [7790-93 ] to perchloric acid, which is neutralized by using ammonia gas ... [Pg.66]

Extremely high purity ammonium perchlorate can be made by the direct reaction of ammonia and pure perchloric acid solution (8,36) ... [Pg.68]

Ammonium Phosphates. In the manufacture of ammonium phosphates, an atmosphere of ammonia may need to be maintained because the partial pressure of ammonia rises rapidly as either the temperature or the NH2/P20 mole ratio of the reaction mass increases. Phosphoric acid reacts quickly with ammonia vapor and is used in multistage reactor systems as a scmbber fluid to prevent NH emissions and recover ammonia values. For example, H PO scmbbing of coke-oven off-gases produces ammonium phosphates of relatively good purity. [Pg.341]

Chevron Chemical Co. began commercial production of isophthahc acid in 1956. The sulfur-based oxidation of / -xylene in aqueous ammonia at about 320°C and 7,000—14,000 kPa produced the amide. This amide was then hydrolyzed with sulfuric acid to produce isophthahc acid at about 98% purity. Arco Chemical Co. began production in 1970 using air oxidation in acetic acid catalyzed by a cobalt salt and promoted by acetaldehyde at 100—150°C and 1400—2800 kPa (14—28 atm). The cmde isophthahc acid was dissolved and recrystallized to yield a product exceeding 99% purity. The Arco technology was not competitive and the plant was shut down in 1974. [Pg.493]

A mixture of primary and secondary amines is formed when ammonia is not used during the nitrile reduction. It is possible to prepare high purity secondary amines by carrying the reduction out at low pressure and passing hydrogen through the reaction in a batch process (47,48),... [Pg.220]

Ammonium bicarbonate is produced as both food and standard grade and the available products are normally very pure. Although purification is possible by sublimation at low temperatures, it is more economical to prepare the desired product directiy by using ammonia and carbon dioxide of high purity. [Pg.363]

Several commercial grades are available fine crystals of 99 to 100% purity, large crystals, pressed lumps, rods, and granular material. Double-Decomposition Methods. Double-decomposition processes all iavolve the reaction of sodium chloride, the cheapest chlorine source, with an ammonium salt. The latter may be suppHed directiy, or generated in situ by the reaction of ammonia and a supplementary iagredient. Ammonium chloride and a sodium salt are formed. The sodium salt is typically less soluble and is separated at higher temperatures ammonium chloride is recovered from the filtrate by cooling. [Pg.364]

The y-radiation-induced polymerization requires an extremely high purity reaction system. Trace amounts of water can terminate a cationic reaction and inhibit polymerization. Organic bases such as ammonia and trimethylamine also inhibit polymerization. The y-radiation-induced polymerization of a rigorously dried D obeys the Hayashi-WilHams equation for completely pure systems (150). [Pg.47]

The level of technical service support provided for a given product generally tracks in large part where the suppHer considers thek product to be located within the spectmm of commodity to specialty chemicals. Technical service support levels for pure chemicals usually provided in large quantities for specific synthetic or processing needs, eg, ammonia (qv), sulfuric acid (see SuLFURic ACID AND SULFURTRIOXIDe), formaldehyde (qv), oxygen (qv), and so forth, are considerably less than for more complex materials or blends of materials provided for multistep downstream processes. Examples of the latter are many polymers, colorants, flocculants, impact modifiers, associative thickeners, etc. For the former materials, providing specifications of purity and physical properties often comprises the full extent of technical service requked or expected by customers. These materials are termed undifferentiated chemicals (9),... [Pg.377]

The route to 3-bromothiophene utilises a variation of the halogen dance technology (17). Preferably, 2,5-dibromothiophene [3141-27-3] is added to a solution of sodamide in thiophene containing the catalyst tris(2-(2-methoxyethoxy)ethyl)amine (l DA-1) (33) at temperatures marginally below reflux. On completion, quenching exothermically Hberates ammonia gas the organic phase is separated, washed, and distilled, and foremnning thiophene is recycled. Material of 97—98% purity is isolated. [Pg.21]

For direct precipitation of vanadium from the salt-roast leach Hquor, acidulation to ca pH 1 without the addition of ammonia salts yields an impure vanadic acid when ammonium salts are added, ammonium polyvanadate precipitates. The impure vanadic acid ordinarily is redissolved in sodium carbonate solution, and ammonium metavanadate precipitates upon addition of ammonium salts. Fusion of the directly precipitated ammonium salts can yield high purity V20 for the chemical industry. Amine solvent extraction is sometimes used to recover 1—3 g/L of residual V20 from the directly precipitated tail Hquors. [Pg.392]

In this dry process, ammonia gas passes into a molten mixture of potassium carbonate and charcoal. Although purity of the product is high, this process became obsolete because of the lower costs of the neutralization process. [Pg.385]

A convenient laboratory synthesis of high purity CA is hydrolysis of cyanuric chloride (7). On a commercial scale, CA is produced by pyrolysis of urea [57-13-6]. When urea is heated at - 250 ° C for about an hour, it is converted to crude CA with evolution of ammonia. [Pg.420]

Potassium chloride is crystallized from sea bitterns containing chlorides of potassium, sodium and calcium by ammoniation (Jagadesh etai, 1992). This process is less energy intensive and more efficient than by fractional crystallization by evaporation, as the ammonia used is recovered by distillation. Crystallization produces a better quality product in terms of both size and purity than by other methods. [Pg.234]

With increasing purity of aluminium, greater resistance to corrosion is developed. On high-purity materials, however, any pits which develop are likely to be deeper though fewer in number than those formed in more impure metal. In some special applications, notably in contact with ammonia solutions or pure water at elevated temperatures and pressures, the iron and silicon present in commercial-purity metal are beneficial and retard corrosion. Up to about 5% magnesium improves the corrosion resistance to sea-water. [Pg.662]


See other pages where Ammonia purity is mentioned: [Pg.109]    [Pg.566]    [Pg.282]    [Pg.322]    [Pg.446]    [Pg.216]    [Pg.508]    [Pg.509]    [Pg.11]    [Pg.387]    [Pg.420]    [Pg.427]    [Pg.428]    [Pg.251]    [Pg.496]    [Pg.220]    [Pg.220]    [Pg.337]    [Pg.332]    [Pg.363]    [Pg.432]    [Pg.378]    [Pg.420]    [Pg.1542]    [Pg.1]    [Pg.497]    [Pg.526]    [Pg.107]    [Pg.1120]    [Pg.214]    [Pg.1596]    [Pg.915]   
See also in sourсe #XX -- [ Pg.200 , Pg.202 , Pg.208 ]




SEARCH



© 2024 chempedia.info