Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1 -Aminocyclopropane-1 -carboxylic acid oxidase

Two short reports concerning another mononuclear iron (ferrous) centre, 1-aminocyclopropane- 1-carboxylic acid oxidase, abbreviated ACCO, have been presented. This enzyme catalyses the last step in the synthesis of ethylene, a gaseous hormone involved in ripening of plants. One paper deals with spectroscopic techniques including near infrared (NIR) and circular or magnetic circular dichroism applied to the ferrous active site. The other is on preliminary ENDOR data probing the ligation and structure of this site in the ferric state. ... [Pg.307]

Hot water treatment was reported to delay carotenoid synthesis and thus yellowing of broccoli florets (at 40°C for 60 min) and kale (at 45°C for 30 min), but did not affect Brussels sprouts (Wang 2000). Hot air treatment (38°C and 95% RH for 24 hr) slightly decreased lycopene and (3-carotene content in tomato fruit (Yahia and others 2007) however, fruit heated at 34°C for 24 hr and stored 20°C developed higher lycopene and (3-carotene than nonheated fruit (Soto-Zamora and others 2005). Moist (100% RH) hot air (48.5 or 50°C) for 4 hr caused injury to papaya and losses in lycopene and (3-carotene, but similar treatment with dry air (50% RH), alone or in combination with thiabendazole, had no effect on lycopene and (3-carotene (Perez-Carrillo and Yahia 2004). High-temperature treatment also suppressed 1-aminocyclopropane-l-carboxylic acid oxidase activity and thus indirectly prevented carotenoid synthesis (Suzuki and others 2005). [Pg.197]

The possibility that many organic compounds could potentially be precursors of ethylene was raised, but direct evidence that in apple fruit tissue ethylene derives only from carbons of methionine was provided by Lieberman and was confirmed for other plant species. The pathway of ethylene biosynthesis has been well characterized during the last three decades. The major breakthrough came from the work of Yang and Hoffman, who established 5-adenosyl-L-methionine (SAM) as the precursor of ethylene in higher plants. The key enzyme in ethylene biosynthesis 1-aminocyclopropane-l-carboxylate synthase (S-adenosyl-L-methionine methylthioadenosine lyase, EC 4.4.1.14 ACS) catalyzes the conversion of SAM to 1-aminocyclopropane-l-carboxylic acid (ACC) and then ACC is converted to ethylene by 1-aminocyclopropane-l-carboxylate oxidase (ACO) (Scheme 1). [Pg.92]

Scheme 1 The ethylene biosynthetic pathway. The enzymes catalyzing each step are shown above the arrows. SAM S-adenosyl-L-methionine SAMS S-adenosyl-i-methionine synthetase ACC 1-aminocyclopropane-1-carboxylic acid ACS 1-aminocyclopropane-1-carboxylate synthase ACO 1-aminocyclopropane-1-carboxylate oxidase Ade adenine MTA methylthioadenosine. The atoms of SAM recycled to methionine through methionine cycle are marked in red and the atoms of methionine converted to ethylene are marked in bold. For details see text. Scheme 1 The ethylene biosynthetic pathway. The enzymes catalyzing each step are shown above the arrows. SAM S-adenosyl-L-methionine SAMS S-adenosyl-i-methionine synthetase ACC 1-aminocyclopropane-1-carboxylic acid ACS 1-aminocyclopropane-1-carboxylate synthase ACO 1-aminocyclopropane-1-carboxylate oxidase Ade adenine MTA methylthioadenosine. The atoms of SAM recycled to methionine through methionine cycle are marked in red and the atoms of methionine converted to ethylene are marked in bold. For details see text.
Ethylene production in plants is driven by two enzyme activities, 1-aminocyelopropane-l-carboxylate synthase (ACC synthase EC 4.4.1.14) that produces 1-aminocyclopropane acid from 5 -adenosylmethionine followed by aminocyclopropanecarboxylate oxidase (ACC oxidase EC 1.14.17.4) decomposing 5 -adenosylmethionine to ethylene, cyanide and... [Pg.243]


See other pages where 1 -Aminocyclopropane-1 -carboxylic acid oxidase is mentioned: [Pg.260]    [Pg.926]    [Pg.524]    [Pg.352]    [Pg.216]    [Pg.401]    [Pg.260]    [Pg.581]    [Pg.319]    [Pg.935]    [Pg.167]    [Pg.515]    [Pg.1170]    [Pg.155]    [Pg.272]    [Pg.1064]    [Pg.151]    [Pg.130]   
See also in sourсe #XX -- [ Pg.26 , Pg.935 , Pg.950 ]




SEARCH



1 -aminocyclopropane-1 -carboxylic

1-Aminocyclopropane-l-carboxylic acid oxidase

Aminocyclopropane carboxylate

Aminocyclopropanes

© 2024 chempedia.info