Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino compounds, aromas from

The first group contains compounds produced in the early stages of the reaction by the breakdown of the Amadori or Heynes intermediates, and includes similar compounds to those found in the caramelisation of sugars. Many of these compounds possess aromas that could contribute to food flavour, but they are also important intermediates for other compounds. The second group comprises simple aldehydes, hydrogen sulphide or amino compounds that result from the Strecker degradation occurring between amino acids and dicarbonyl compounds. [Pg.274]

Pyrroles are found in the volatiles of most heated foods [29], although they have received less attention than some other classes of aroma volatiles. Some pyrroles may contribute desirable aromas, e.g. 2-acetylpyrrole has a caramel-like aroma, and pyrrole-2-carboxaldehyde is sweet and corn-like, but alkylpyrroles and ac-ylpyrroles have been reported to have unfavourable odours [22]. Many more volatile pyrroles have been found in coffee than in other foods [30], and they are common products of amino acid-sugar model systems. Pyrroles are closely related in structure to the furans, and they are probably formed in a related manner from the reaction of a 3-deoxyketose with ammonia or an amino compound followed by dehydration and ring closure (cf Scheme 12.2). [Pg.277]

Several of the smaller volatile compounds formed from the catabolism of products of primary proteolysis (e.g., amino acids) can be determined by GC. The development of capillary columns and interfacing GC with MS has noticeably increased the sensitivity of this analysis. Over 200 volatile compounds have been identified in Cheddar cheese. A list of several of these compounds can be found elsewhere (Fox et ah, 2004a Singh et ah, 2003). The instrumental techniques available for the characterization of cheese aroma were also discussed recently (Le Quere, 2004 Singh et al., 2003). [Pg.195]

The flavor industry has introduced, over the years, methods of developing meat flavors by processing appropriate precursors under carefully controlled reaction conditions. As a result, meat flavors having a remarkably genuine meat character in the beef, chicken and pork tonalities are available for the food industry. It has repeatedly been stated that the Maillard reaction is particularly important for the formation of meat flavors. However, of the 600 volatile compounds isolated from natural beef aroma, only 12% of them find their origin in sugar/amino acid interactions and of these 70% are pyrazine derivatives. [Pg.433]

In heated foods the main reactions by which flavors are formed are the Maillard reaction and the thermal degradation of lipids. These reactions follow complex pathways and produce reactive intermediates, both volatile and non-volatile. It has been demonstrated that lipids, in particular structural phospholipids, are essential for the characteristic flavor development in cooked meat and that the interaction of lipids with products of the Maillard reaction is an important route to flavor. When model systems containing amino acids and ribose were heated in aqueous buffer, the addition of phospholipids had a significant effect on the aroma and on the volatile products. In addition a number of heterocyclic compounds derived from lipid - Maillard interactions were found. The extent of the interaction depends on the lipid structure, with phospholipids reacting much more readily than triglycerides. [Pg.442]

Volatile sulfur compounds are found in most cheeses and can be important flavor constituents. The origin of sulfur-containing compounds is generally thought to be the sulfur-containing amino acids methionine and cysteine (Law, 1987). As Cys is rare in the caseins (occurring at low levels only in Os2- and K-caseins, which are not extensively hydrolyzed in cheese), the origin of sulfur compounds must be primarily Met. Sulfur compounds formed from Met include H2S, dimethylsulfide, and methanethiol. The importance of methanethiol and related compounds in cheese aroma is discussed by Law (1987). [Pg.234]

The edible portion of broccoli Brassica oleracea var. italica) is the inflorescence, and it is normally eaten cooked, with the main meal. Over 40 volatile compounds have been identified from raw or cooked broccoli. The most influential aroma compounds found in broccoli are sulfides, isothiocyanates, aliphatic aldehydes, alcohols and aromatic compounds [35, 166-169]. Broccoli is mainly characterised by sulfurous aroma compounds, which are formed from gluco-sinolates and amino acid precursors (Sects. 7.2.2, 7.2.3) [170-173]. The strong off-odours produced by broccoli have mainly been associated with volatile sulfur compounds, such as methanethiol, hydrogen sulfide, dimethyl disulfide and trimethyl disulfide [169,171, 174, 175]. Other volatile compounds that also have been reported as important to broccoli aroma and odour are dimethyl sulfide, hexanal, (Z)-3-hexen-l-ol, nonanal, ethanol, methyl thiocyanate, butyl isothiocyanate, 2-methylbutyl isothiocyanate and 3-isopropyl-2-methoxypyrazine... [Pg.169]

Musty or potato-like flavor and aroma have been observed as a defect in milk (Hammer and Babel 1957) and Gruyere de Comte cheese (Dumont et al. 1975). This off-flavor results from the production of nitrogenous cyclic compounds by Pseudomonas taetrolens and P. perolens (Morgan 1976). Musty-flavored compounds produced by these organisms include 2,5-dimethylpyrazine and 2-methoxy-3-isopropyl-pyrazine. The Gruyere de Comte with potato off-flavor contained 3-methoxy-2-propyl pyridine, as well as alkyl pyrazine compounds (Dumont et al. 1975). Murray and Whitfield (1975) postulated that alkyl pyrazines are formed in vegetables by condensation of amino acids such as valine, isoleucine, and leucine with a 2-carbon compound. Details of the synthetic mechanism in pseudomonads are unknown. [Pg.690]

Thermal aromas result from the Maillard reaction. By heating carbohydrates with amino acids degradation is accelerated yielding reactive compounds which, by new reactions with amino acids, are converted to heterocyclic products. Results of model investigations of glucose or its degradation compounds with the amino acids serine and phenylalanine are discussed. [Pg.143]

Also acetic acid may arise from a reaction of this type. Most important compounds of this pathway are pyruvic aldehyde, diacetyl, hydro-oxyacetone and hydroxydiacetyl which can easily react with amino acids. The Strecker degradation is a reaction where the amino acid is de-carboxylated and loses its amino group. Reaction products are the Strecker aldehyde and - as an intermediate - an aminoketone which forms a pyrazine by dimerization. This pathway is considered to be most important for the origin of pyrazines in thermal aromas. However, only limited knowledge is available about the fate of the Strecker aldehydes. As we will demonstrate they are very reactive. [Pg.146]

Heterocyclic aroma compounds found in meat primarily arise from interactions between mono- and dicarbonyl compounds, H2S and ammonia. The carbonyl compounds are derived from the Maillard reaction, including Strecker degradation of amino acids, oxidation of lipids and aldolization reactions. H2S is produced by thermal degradation of sulfur amino acids and ammonia by amino acid pyrolysis. [Pg.430]

Lipids play an important part in the development of aroma in cooked foods, such as meat, by providing a source of reactive intermediates which participate in the Maillard reaction. Phospholipids appear to be more important than triglycerides. The addition of phospholipid to aqueous amino acid + ribose mixtures leads to reductions in the concentrations of heterocyclic compounds formed in the Maillard reaction. This effect could be due to lipid oxidation products reacting with simple Maillard intermediates, such as hydrogen sulfide and ammonia, to give compounds not normally found in the Maillard reaction. The precise nature of the odoriferous products obtained from lipid - Maillard interactions is dictated by the lipid structure and may depend on the fatty acid composition and the nature of any polar group attached to the lipid. [Pg.450]

Flavors and odors given by amino acids and sugars in dilute aqueous solutions at different temperatures has been the subject of intensive studies by various researchers. Tables V and VI summarize the descriptive aroma evolved from reacting carbonyl compounds with amino acids at 100, and 120/180°C., respectively... [Pg.214]


See other pages where Amino compounds, aromas from is mentioned: [Pg.140]    [Pg.144]    [Pg.234]    [Pg.805]    [Pg.165]    [Pg.299]    [Pg.356]    [Pg.895]    [Pg.24]    [Pg.372]    [Pg.387]    [Pg.90]    [Pg.101]    [Pg.324]    [Pg.242]    [Pg.252]    [Pg.279]    [Pg.423]    [Pg.530]    [Pg.533]    [Pg.624]    [Pg.113]    [Pg.372]    [Pg.565]    [Pg.170]    [Pg.304]    [Pg.206]    [Pg.30]    [Pg.209]    [Pg.280]    [Pg.292]    [Pg.487]    [Pg.99]    [Pg.232]    [Pg.233]    [Pg.120]   


SEARCH



Amino compounds

Aroma Compounds from Amino Acid Metabolism

Aroma amino compounds

Aroma compounds

© 2024 chempedia.info