Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acid synthesis phosphorylation

Amino Acids publishes contributions from all fields of amino acid research analysis, separation, synthesis, biosynthesis, cross linking amino acids, race-mization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. [Pg.254]

The citric acid cycle (also known as the tricarboxylic acid cycle, TCA cycle, Krebs cycle) oxidizes acetyl CoA in mitochondria. The cycle produces CO2, NADH and FADH2. The NADH and FADH2 enter oxidative phosphorylation, where they are oxidized to NAD+ and FAD, ready to be used in the citric acid cycle again. The citric acid cycle is also important in some biosynthetic processes such as lipid synthesis, amino acid synthesis, porphyrin synthesis and gluconeogenesis. [Pg.26]

Synthetic processes proceeding in respiring cells not only consume the energy stored in ATP and other phosphorylated compounds but draw upon the intermediates of respiration. For instance, the enhanced rate of respiration of cells actively synthesising proteins is, in part, due to the utilisation in amino acid synthesis of organic acids which are Krebs cycle intermediates. It is clearly a major objective in the study of plant metabolism to understand the quantitative aspects of such inter-relationships between the metabolic processes of the cell. [Pg.129]

The procedure described is essentially that of Shioiri and Yamada. Diphenyl phosphorazidate is a useful and versatile reagent in organic synthesis. It has been used for racemlzatlon-free peptide syntheses, thiol ester synthesis, a modified Curtius reaction, an esterification of a-substituted carboxylic acld, formation of diketoplperazines, alkyl azide synthesis, phosphorylation of alcohols and amines,and polymerization of amino acids and peptides. - Furthermore, diphenyl phosphorazidate acts as a nitrene source and as a 1,3-dipole.An example in the ring contraction of cyclic ketones to form cycloalkanecarboxylic acids is presented in the next procedure, this volume. [Pg.188]

Pyruvate kinase possesses allosteric sites for numerous effectors. It is activated by AMP and fructose-1,6-bisphosphate and inhibited by ATP, acetyl-CoA, and alanine. (Note that alanine is the a-amino acid counterpart of the a-keto acid, pyruvate.) Furthermore, liver pyruvate kinase is regulated by covalent modification. Flormones such as glucagon activate a cAMP-dependent protein kinase, which transfers a phosphoryl group from ATP to the enzyme. The phos-phorylated form of pyruvate kinase is more strongly inhibited by ATP and alanine and has a higher for PEP, so that, in the presence of physiological levels of PEP, the enzyme is inactive. Then PEP is used as a substrate for glucose synthesis in the pathway (to be described in Chapter 23), instead... [Pg.630]

Enzyme preparations from liver or microbial sources were reported to show rather high substrate specificity [76] for the natural phosphorylated acceptor d-(18) but, at much reduced reaction rates, offer a rather broad substrate tolerance for polar, short-chain aldehydes [77-79]. Simple aliphatic or aromatic aldehydes are not converted. Therefore, the aldolase from Escherichia coli has been mutated for improved acceptance of nonphosphorylated and enantiomeric substrates toward facilitated enzymatic syntheses ofboth d- and t-sugars [80,81]. High stereoselectivity of the wild-type enzyme has been utilized in the preparation of compounds (23) / (24) and in a two-step enzymatic synthesis of (22), the N-terminal amino acid portion of nikkomycin antibiotics (Figure 10.12) [82]. [Pg.283]

This potential, or protonmotive force as it is also called, in turn drives a number of energy-requiring functions which include the synthesis of ATP, the coupling of oxidative processes to phosphorylation, a metabohc sequence called oxidative phosphorylation and the transport and concentration in the cell of metabolites such as sugars and amino acids. This, in a few simple words, is the basis of the chemiosmotic theory linking metabolism to energy-requiring processes. [Pg.257]

The reaction of dipyridyl disulphide with triphenylphosphine to give the stable phosphonium salt (51) has been used in new methods of phosphorylation (reaction A), in peptide synthesis (reaction B), and in the formation of active esters of cx-amino-acids (reaction C). These reactions appear to have synthetic potential. [Pg.242]

A further important group of derivatives is that of amino acids activated by phosphoric acid or its esters. In nature, phosphorylation processes play an important activating role in peptide and protein synthesis. [Pg.128]

Hormonal actions on target neurons are classified in terms of cellular mechanisms of action. Hormones act either via cell-surface or intracellular receptors. Peptide hormones and amino-acid derivatives, such as epinephrine, act on cell-surface receptors that do such things as open ion-channels, cause rapid electrical responses and facilitate exocytosis of hormones or neurotransmitters. Alternatively, they activate second-messenger systems at the cell membrane, such as those involving cAMP, Ca2+/ calmodulin or phosphoinositides (see Chs 20 and 24), which leads to phosphorylation of proteins inside various parts of the target cell (Fig. 52-2A). Steroid hormones and thyroid hormone, on the other hand, act on intracellular receptors in cell nuclei to regulate gene expression and protein synthesis (Fig. 52-2B). Steroid hormones can also affect cell-surface events via receptors at or near the cell surface. [Pg.846]

We should note at this point that the TCA cycle is more than just a means of producing NADH for oxidative phosphorylation. The pathway also provides a number of useful intermediates for other, often synthetic, pathways. For example, citrate is the starting substance for fat synthesis (Chapter 9) succinyl-CoA is required for haem production and 2-oxoglutarate and oxaloacetate in particular are involved with amino acid and pyrimidine metabolism. Pathways which have dual catabolic/anabolic functions are referred to as amphibolic . [Pg.77]

Insulin promotes amino acid uptake and protein formation. AKT, noted above, is also implicated in mechanisms which regulate protein synthesis. Acting via GSK-3 again, under basal conditions, GSK-3 phosphorylates a key protein translation regulator (called eIF2B). Thus, if GSK-3 is inactivated, eIF2B is not phosphorylated and mRNA translation is permitted. [Pg.117]

In contrast to the inherent limitations of synthesis in solution, solid-phase peptide synthesis provides a key method for the generation of many large and complex peptides. The application of phosphorylated amino acids to solid-phase methodology has been the subject of particular interest in consideration of the synthetic potential of this approach for the rapid and routine preparation of complex phosphopeptides. Unlike other amino acids, the generation of Ser(F)- and Thr(P)-peptides is complicated due to the sensitivity of these residues to harsh acid or base conditions and the selection of suitable phosphate derivatives that are compatible with solid-phase peptide synthesis. [Pg.393]

Depletion of ATP is caused by many toxic compounds, and this will result in a variety of biochemical changes. Although there are many ways for toxic compounds to cause a depletion of ATP in the cell, interference with mitochondrial oxidative phosphorylation is perhaps the most common. Thus, compounds, such as 2,4-dinitrophenol, which uncouple the production of ATP from the electron transport chain, will cause such an effect, but will also cause inhibition of electron transport or depletion of NADH. Excessive use of ATP or sequestration are other mechanisms, the latter being more fully described in relation to ethionine toxicity in chapter 7. Also, DNA damage, which causes the activation of poly(ADP-ribose) polymerase (PARP), may lead to ATP depletion (see below). A lack of ATP in the cell means that active transport into, out of, and within the cell is compromised or halted, with the result that the concentration of ions such as Na+, K+, and Ca2+ in particular compartments will change. Also, various synthetic biochemical processes such as protein synthesis, gluconeogenesis, and lipid synthesis will tend to be decreased. At the tissue level, this may mean that hepatocytes do not produce bile efficiently and proximal tubules do not actively reabsorb essential amino acids and glucose. [Pg.219]

Another way in which the phosphorylation state of the adenylate system can regulate the cycle depends upon the need for GDP in step/of the cycle (Fig. 17-4). Within mitochondria, GTP is used largely to reconvert AMP to ADP. Consequently, formation of GDP is promoted by AMP, a compound that arises in mitochondria from the utilization of ATP for activation of fatty acids (Eq. 13-44) and activation of amino acids for protein synthesis (Eq. 17-36). [Pg.957]


See other pages where Amino acid synthesis phosphorylation is mentioned: [Pg.45]    [Pg.204]    [Pg.437]    [Pg.314]    [Pg.480]    [Pg.68]    [Pg.123]    [Pg.568]    [Pg.338]    [Pg.169]    [Pg.365]    [Pg.323]    [Pg.852]    [Pg.156]    [Pg.253]    [Pg.294]    [Pg.163]    [Pg.242]    [Pg.384]    [Pg.56]    [Pg.84]    [Pg.393]    [Pg.244]    [Pg.390]    [Pg.492]    [Pg.213]    [Pg.932]    [Pg.690]    [Pg.914]    [Pg.316]    [Pg.442]    [Pg.156]    [Pg.379]    [Pg.799]   
See also in sourсe #XX -- [ Pg.698 ]




SEARCH



Amino acids, phosphorylation

Amino phosphoryl

Phosphorylated amino acids

Phosphorylation synthesis

Synthesis amino acids

© 2024 chempedia.info