Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Translation of mRNA

FIGURE 28 12 Translation of mRNA to an ammo acid sequence of a protein starts at an mRNA codon for methionine Nucleophilic acyl substitution transfers the N formylmethionme residue from Its tRNA to the ammo group of the next ammo acid (shown here as alanine) The process converts an ester to an amide... [Pg.1178]

When the cell requires instructions for protein production, part of the code on DNA, starting at an initiator and ending at a stop codon, is converted into a more mobile form by transferring the DNA code into a matching RNA code on a messenger ribonucleic acid (mRNA), a process known as transcription. The decoding, or translation, of mRNA then takes place by special transfer ribonucleic acids (tRNA), which recognize individual codons as amino acids. The sequence of amino acids is assembled into a protein (see Proteins section). In summary, the codes on DNA... [Pg.327]

RNA structures, compared to the helical motifs that dominate DNA, are quite diverse, assuming various loop conformations in addition to helical structures. This diversity allows RNA molecules to assume a wide variety of tertiary structures with many biological functions beyond the storage and propagation of the genetic code. Examples include transfer RNA, which is involved in the translation of mRNA into proteins, the RNA components of ribosomes, the translation machinery, and catalytic RNA molecules. In addition, it is now known that secondary and tertiary elements of mRNA can act to regulate the translation of its own primary sequence. Such diversity makes RNA a prime area for the study of structure-function relationships to which computational approaches can make a significant contribution. [Pg.446]

Increased protein synthesis Increased amino acid uptake/increased translation of mRNA Akt-mediated stimulation of system A amino acid transporter and stimulation of mRNA-translation through activation of p70S6kinase and elongation initiation factor 4 (elF4). Possible involvement of atypical PKCs... [Pg.634]

S6K1 (also known as p70S6 kinase) is a serine/ threonine protein kinase which is involved in the regulation of translation by phosphorylating the 40S ribosomal protein S6. Insulin and several growth factors activate the kinase by phosphorylation in a PI 3-kinase dependent and rapamycin-sensitive manner. Phosphorylation of S6 protein leads to the translation of mRNA with a characteristic 5 polypyrimidine sequence motif. [Pg.1101]

Iron homeostasis in mammalian cells is regulated by balancing iron uptake with intracellular storage and utilization. As we will see, this is largely achieved at the level of protein synthesis (translation of mRNA into protein) rather than at the level of transcription (mRNA synthesis), as was the case in microorganisms. This is certainly not unrelated to the fact that not only do microbial cells have a much shorter division time than mammalian cells, but that one consequence of this is that the half-life of microbial mRNAs is very much shorter (typically minutes rather than the hours or often days that we find with mammals). This makes it much easier to control levels of protein expression by changing the rate of specific mRNA synthesis by the use of inducers and repressors. So how do mammalian cells... [Pg.214]

La Teana, A., Pon, C. L., and Gualerzi, C. O. (1993). Translation of mRNAs with degenerate initiation triplet AUU displays high initiation factor 2 dependence and is subject to initiation factor 3 repression. Proc. Natl. Acad. Sci. U. S. A. 90, 4161—4165. [Pg.297]

In eukaryotes, translation initiation is rate-limiting with much regulation exerted at the ribosome recruitment and ternary complex (elF2 GTP Met-tRNAjMet) formation steps. Although small molecule inhibitors have been extremely useful for chemically dissecting translation, there is a dearth of compounds available to study the initiation phase in vitro and in vivo. In this chapter, we describe reverse and forward chemical genetic screens developed to identify new inhibitors of translation. The ability to manipulate cell extracts biochemically, and to compare the activity of small molecules on translation of mRNA templates that differ in their factor requirements for ribosome recruitment, facilitates identification of the relevant target. [Pg.300]

The next process is similar in both eukaryotes and prokaryotes, and involves the translation of mRNA molecules into polypeptides. This procedure involves many enzymes and two further types of RNA transfer RNA (tRNA) and ribosomal RNA (rRNA). There is a specific tRNA for each of the amino acids. These molecules are involved in the transportation and coupling of amino acids into the resulting... [Pg.179]

That is transcription. Now, we get on with the final step the translation of mRNA structure into protein structure. [Pg.171]

Activation of a ribosomal protein kinase, which increases the rate of translation of mRNA. [Pg.259]

Figure 15.18 The role of the iron-regubting protein on translation of mRNA for the transferrin receptor number in the membrane and the concentration of apoferritin. IRP decreases the rate of degradation of mRNA for translation of the transferrin receptor which increases the number of the receptor molecules. IRP decreases directly the rate of translation of mRNA for apoferritin. Figure 15.18 The role of the iron-regubting protein on translation of mRNA for the transferrin receptor number in the membrane and the concentration of apoferritin. IRP decreases the rate of degradation of mRNA for translation of the transferrin receptor which increases the number of the receptor molecules. IRP decreases directly the rate of translation of mRNA for apoferritin.
A selective method of preventing the expression of adhesion molecules or cytokines is the use of antisense oligonucleotides. These oligonucleotides are short sequences of nucleic acids complementary to mRNA sequences of specific proteins of interest. If delivered to the cytoplasmic compartment of cells these oligonucleotides are able to form a complex with their target mRNA. In this way the translation of mRNA into protein by ribosomes is inhibited. The subsequent mRNA degradation by RNAse H results in reduced expression of the protein (see also Chapter 5 for a description of antisense ohgonucleotides as therapeutic modalities). [Pg.185]

Any alteration in the kinetics or flux of an enzyme-catalyzed reaetion or bioehemical pathway. 2. The regulation of the rate of translation of mRNA by a modulating codon. 3. The fluetuation of cells, either functionally or morphologically or both, in response to one or more changes in the environment of the cells. [Pg.482]

Induction of drug-metabolizing activity can be due either to synthesis of new enzyme protein or to a decrease in the proteolytic degradation of the enzyme. Increased enzyme synthesis is the result of an increase in messenger RNA (mRNA) production (transcription) or in the translation of mRNA into protein. Regardless of the mechanism, the net result of enzyme induction is the increased turnover (metabolism) of substrate. Whereas one frequently associates enzyme inhibition with an increase in potential for toxicity, enzyme induction is most commonly associated with therapeutic failure due to inability to achieve required drug concentrations. [Pg.36]

Fig. 1.54 Principle of negative control of translation initiation by protein binding to mRNA. Proteins can negatively effect translation by binding to the sequences in the 5 non-translated region of their own or other mRNAs. The participating proteins are sequence-specific RNA binding proteins and recognize RNA sequences in hairpin structures or other secondary structures of RNA. The protein binding interferes with the scanning of ribosomes and prevents the translation of mRNA. Fig. 1.54 Principle of negative control of translation initiation by protein binding to mRNA. Proteins can negatively effect translation by binding to the sequences in the 5 non-translated region of their own or other mRNAs. The participating proteins are sequence-specific RNA binding proteins and recognize RNA sequences in hairpin structures or other secondary structures of RNA. The protein binding interferes with the scanning of ribosomes and prevents the translation of mRNA.
The MAPK cascade also has direct effects upon protein synthesis, i.e., on the translation of mRNA messages. For example, insulin stimulates phosphorylation of proteins that regulate a translation initiation factor, a protein called eIF-4E (see Chapter 29). Phosphorylation of inhibitory proteins allows them to dissociate from the initiation factor so that protein synthesis can proceed 485/486... [Pg.578]


See other pages where Translation of mRNA is mentioned: [Pg.259]    [Pg.259]    [Pg.197]    [Pg.921]    [Pg.1093]    [Pg.395]    [Pg.420]    [Pg.128]    [Pg.457]    [Pg.59]    [Pg.96]    [Pg.96]    [Pg.177]    [Pg.273]    [Pg.277]    [Pg.281]    [Pg.421]    [Pg.146]    [Pg.118]    [Pg.710]    [Pg.712]    [Pg.470]    [Pg.557]    [Pg.75]    [Pg.236]    [Pg.421]    [Pg.84]    [Pg.114]    [Pg.16]    [Pg.94]    [Pg.1115]    [Pg.1516]    [Pg.1616]    [Pg.1624]   
See also in sourсe #XX -- [ Pg.489 ]

See also in sourсe #XX -- [ Pg.171 , Pg.172 , Pg.172 ]

See also in sourсe #XX -- [ Pg.66 , Pg.68 , Pg.69 , Pg.140 , Pg.142 ]

See also in sourсe #XX -- [ Pg.262 ]




SEARCH



MRNA

Parameters Determining Translational Efficiency of an mRNA Species

Protein synthesis (translation of mRNA)

Selective Translation of Viral mRNA in Productively-Infected Cells

© 2024 chempedia.info