Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines, radical addition

Bromination. 1-Bromoalkanes are produced commercially by the anti-Markovnikow free-radical addition of HBr to a-olefins. These are further reacted with dimethyl amine to produce alkyldimethyl amines, which ultimately are converted to amine products for household cleaning and personal care. [Pg.436]

Protonated /V-chloroalkyl amines under the influence of heat or uv light rearrange to piperidines or pyrroHdines (Hofmann-Lriffler reaction) (88). The free-radical addition of alkyl and dialkyl-/V-chloramines to olefins and acetylenes yields P-chloroalkji-, P-chloroalkenyl-, and 8-chloroalkenylamines (89). Various N-hiomo- and N-chloropolyfluoroaLkylarnines have been synthesized whose addition products to olefinic double bonds can be photolyzed to fluoroazaalkenes (90). [Pg.455]

Morkovnik et al. (1989) found experimentally that the addition of an equimolar amount of 4-morpholino- or 4-dimethylaminoaniline to a suspension of nitrosyl perchlorate in 100 % acetic acid, dioxan, or acetonitrile yields a mixture of the diazonium perchlorate and the perchlorate salt of the amine radical cation, with liberation of gaseous nitric oxide. Analogous results in benzene, including evidence for radicals by ESR spectroscopy and by spin trapping experiments, were obtained by Reszka et al. (1990). [Pg.43]

When double bonds are reduced by lithium in ammonia or amines, the mechanism is similar to that of the Birch reduction (15-14). ° The reduction with trifluoro-acetic acid and EtsSiH has an ionic mechanism, with H coming in from the acid and H from the silane. In accord with this mechanism, the reaction can be applied only to those alkenes that when protonated can form a tertiary carbocation or one stabilized in some other way (e.g., by a OR substitution). It has been shown, by the detection of CIDNP, that reduction of a-methylstyrene by hydridopenta-carbonylmanganese(I) HMn(CO)5 involves free-radical addition. ... [Pg.1008]

The groups R2N and Cl can be added directly to alkenes, allenes, conjugated dienes, and alkynes, by treatment with dialkyl-V-chloroamines and acids. " These are free-radical additions, with initial attack by the R2NH- radical ion. " N-Halo amides (RCONHX) add RCONH and X to double bonds under the influence of UV light or chromous chloride. " Amines add to allenes in the presence of a palladium catalyst. ... [Pg.1045]

Kemp and coworkers employed the pulse radiolysis technique to study the radiolysis of liquid dimethyl sulfoxide (DMSO) with several amines as solutes [triphenylamine, and N, A, A, N -tetramethyl-p-phenylenediamine (TMPD)]. The radiolysis led to the formation of transient, intense absorptions closely resembling those of the corresponding amine radical cations. Pulse radiolysis studies determine only the product Ge, where G is the radiolytic yield and e is the molar absorption. Michaelis and coworkers measured e for TMPD as 1.19 X 10 m s and from this a G value of 1.7 is obtained for TMPD in DMSO. The insensitivity of the yield to the addition of electron scavenger (N2O) and excited triplet state scavenger (naphthalene) proved that this absorption spectrum belonged to the cation. [Pg.895]

Clerici and Porta reported that phenyl, acetyl and methyl radicals add to the Ca atom of the iminium ion, PhN+Me=CHMe, formed in situ by the titanium-catalyzed condensation of /V-methylanilinc with acetaldehyde to give PhNMeCHMePh, PhNMeCHMeAc, and PhNMeCHMe2 in 80% overall yield.83 Recently, Miyabe and co-workers studied the addition of various alkyl radicals to imine derivatives. Alkyl radicals generated from alkyl iodide and triethylborane were added to imine derivatives such as oxime ethers, hydrazones, and nitrones in an aqueous medium.84 The reaction also proceeds on solid support.85 A-sulfonylimines are also effective under such reaction conditions.86 Indium is also effective as the mediator (Eq. 11.49).87 A tandem radical addition-cyclization reaction of oxime ether and hydrazone was also developed (Eq. 11.50).88 Li and co-workers reported the synthesis of a-amino acid derivatives and amines via the addition of simple alkyl halides to imines and enamides mediated by zinc in water (Eq. 11.51).89 The zinc-mediated radical reaction of the hydrazone bearing a chiral camphorsultam provided the corresponding alkylated products with good diastereoselectivities that can be converted into enantiomerically pure a-amino acids (Eq. 11.52).90... [Pg.358]

Free-radical additions of trichlorosilane to acetylenes initiated by benzoyl peroxide were stereospecific trans additions, giving only cis adducts. The same workers observed that tri-n -butyl amine also catalyzed addition of trichlorosilane to phenylacetylene but gave a mixture of cis- and trans -l-phenyl-2-trichlorosilylethene, 1,1-phenyltrichlorosilylethene, and 1-phenyl-l,2-bistrichlorosilylethane (54). No stereospecificity was observable with the amine as catalyst. [Pg.444]

Hence, the copper surface catalyzes the following reactions (a) decomposition of hydroperoxide to free radicals, (b) generation of free radicals by dioxygen, (c) reaction of hydroperoxide with amine, and (d) heterogeneous reaction of dioxygen with amine with free radical formation. All these reactions occur homolytically [13]. The products of amines oxidation additionally retard the oxidation of hydrocarbons after induction period. The kinetic characteristics of these reactions (T-6, T = 398 K, [13]) are presented below. [Pg.689]

Scheme 55, Eq. 55a) [119]. A plausible mechanism is depicted in Scheme 55 and involves radical addition of the 2-tetrahydrofuryl radical to the aldehyde followed by a rapid reaction of the alkoxyl radical with Et3B. Triethylborane has a crucial role since by reacting with the alkoxyl radical it favors the formation of the condensation product relative to the -fragmentation process (back reaction). A similar reaction with tertiary amines, amides and urea is also possible (Eq. 55b) [120]. [Pg.111]

In addition to generating amine radical cation mediators and functionalizing... [Pg.285]

Accordingly, many reactions can be performed on the sidewalls of the CNTs, such as halogenation, hydrogenation, radical, electrophilic and nucleophilic additions, and so on [25, 37, 39, 42-44]. Exhaustively explored examples are the nitrene cycloaddition, the 1,3-dipolar cycloaddition reaction (with azomethinylides), radical additions using diazonium salts or radical addition of aromatic/phenyl primary amines. The aryl diazonium reduction can be performed by electrochemical means by forming a phenyl radical (by the extrusion of N2) that couples to a double bond [44]. Similarly, electrochemical oxidation of aromatic or aliphatic primary amines yields an amine radical that can be added to the double bond on the carbon surface. The direct covalent attachment of functional moieties to the sidewalls strongly enhances the solubility of the nanotubes in solvents and can also be tailored for different... [Pg.131]

The A -methyl derivative (32) was obtained from 31 via a Leuckart reaction and isolated as its hydrochloride 32 is also formed in the Hoffmann-Lbflfterreaction(photolysisinsulfuricacid)ofthei r-chloramine (33), since after separation of secondary amines and addition of methyl iodide a 10% yield of the methiodide (34) was obtained. The secondary amine (31) was also converted to its A-acyl and JV -nitroso derivatives (35-37) and (38), respectively, by conventional procedures. Free-radical chlorination of 37 gave the ca o-2-chloro derivative (39) and... [Pg.92]

A water-soluble Cj-symmetrical trisadduct of Cjq showed excellent radical scavenging properties in vitro and in vivo and exhibits remarkable neuro-pro tective properties [7,8]. It is a drug candidate for the prevention of ALS and Parldnsoris disease. Concerning the reaction mechanism, nucleophilic additions and radical additions are closely related and in some cases it is difficult to decide which mechanism actually operates [92]. For example, the first step in the reaction of f-eo with amines is a single electron transfer (SET) from the amine to the fullerene. The resulting amines are finally formed via a complex sequence of radical recombinations, deprotonations and redox reactions [36]. [Pg.389]

The photochemistry of Eosin under both reductive and oxidative conditions has been studied by several groups [145-151], Photoreduction by amines such as tribenzylamine (R = CH2, R" = ) produces two leuco analogues, the dihydro derivative, and the cross-coupled product formed from the amine radical and the dye radical anion (2) [152], In addition, debromination of Eosin is reported during photobleaching with amines and phenols. The reader however is referred to the extensive studies of Rose Bengal dehalogenation by Paczkowski and Neckers [153]. Radiolysis of Eosin in methanol shows that debromination is a consequence of the photochemical decomposition of semireduced Eosin [154],... [Pg.325]

The latter, on reaction with methylamine yielded via the P-epoxide 373, the trans-a aminoalcohol 374, which was N-acylated to the amide 375. Acid-catalysed dehydration of the tertiary alcohol 375, led to the olefin 375, from which the key radical precursor, the chlorothioether377 was secured in quantitative yield by reaction with N-chlorosuccinimide. In keeping with the earlier results recorded for structurally related compounds, 377 on heating in the presence of ruthenium dichloride and triphenylphosphine also underwent a 5-exo radical addition to generate the cyclohexyl radical 378 which recaptured the chlorine atom to furnish the a-chloro-c/5-hydroindolone 379. Oxidation of thioether 379 gave the corresponding sulfoxide 380, which on successive treatment with trifluoroacetic anhydride and aqueous bicarbonate led to the chloro-a-ketoamide 381. The olefin 382 resulting from base induced dehydrochlorination of 381, was reduced to the hydroxy-amine 383, which was obtained as the sole diastereoisomer... [Pg.525]

In 1990, Porta and co-workers [6] reported the first nucleophilic radical addition to aldimines promoted by aqueous TiCl3, based on a one-pot tricomponent reaction involving an aromatic amine, a generic aldehyde, and an arene-diazonium salt (Equation 14.15). [Pg.345]

Even imines formed by in situ condensation of aromatic amines with either acetaldehyde or formaldehyde afforded the desired products. The successful radical addition to these rather unstable and polymerizable imines in aqueous medium may be ascribed to the lack of steric hindrance at the C-atom. [Pg.347]

Hoffmann, N., Bertrand, S., Marinkovic F S. and Pesch, J. (2006) Efficient radical addition of tertiary amines to alkenes using photochemical electron transfer. Pure and Applied Chemistry, 78, 2227-2246. [Pg.90]

Tandem radical addition/cydization reactions have been performed using unsaturated tertiary amines (Scheme 9.11) [14,15]. Radical attack is highly stereoselective anti with respect to the 5-alkoxy substituent of 2-(5f-J)-furanones, which act as the electron-deficient alkenes. However, the configuration of the a position of the nitrogen cannot be controlled. Likewise, tandem addition cyclization reactions occur with aromatic tertiary amines (Scheme 9.12) in this case, acetone (mild oxidant) must be added to prevent the partial reduction of the unsaturated ketone [14]. [Pg.291]

Bertrand, S., Hoffmann, N., and Pete, J.P. (2000) Highly efficient and stereoselective radical addition of tertiary amines to electron-deficient alkenes-application to the enantioselective synthesis of necine bases. European Journal of Organic Chemistry, 82, 2227—2238. [Pg.314]

Early examples of intramolecular aryl radical addition reactions to heteroatom containing multiple bonds included cyclizations on N=N and C=S moieties [52, 53]. Recently, cyclizations to imines have been used as part of a new enantio-selective approach to indolines (Scheme 8). In the first step of the sequence, the required ketimines 19 were obtained by phase-transfer catalyzed alkylation of 2-bromobenzyl bromides 20 with glycinyl imines 21 in the presence of a cincho-nidinium salt [54], Due to the favorable substitution pattern on the imine moiety of 19, the tributyltin hydride mediated radical cyclization to 22 occurred exclusively in the 5-exo mode. The indoline synthesis can therefore also be classified as a radical amination. [Pg.38]

The C=N bond of simple imines possesses modest reactivity toward intermolecular radical additions, so such acceptors have rarely been exploited. To enhance their reactivity toward nucleophilic radicals, electron-withdrawing groups at the imine carbon have been effective, as demonstrated by Bertrand in radical additions to a-iminoesters prepared from chiral amines [25]. Also, more reactive oxime ethers have been exploited extensively for radical addition, mainly through the longstanding efforts of Naito [26]. In most cases, stereocontrol has been imparted through the substituents on the imino carbon chiral O-substituents on oximes for stereocontrol were ineffective, presumably due to poor rotamer control [27, 28]. [Pg.63]


See other pages where Amines, radical addition is mentioned: [Pg.269]    [Pg.197]    [Pg.204]    [Pg.895]    [Pg.1655]    [Pg.268]    [Pg.401]    [Pg.622]    [Pg.72]    [Pg.300]    [Pg.177]    [Pg.194]    [Pg.453]    [Pg.179]    [Pg.1277]    [Pg.588]    [Pg.596]    [Pg.616]    [Pg.394]    [Pg.115]    [Pg.61]    [Pg.62]   


SEARCH



Additives, 423 Amines

Amine Radical

© 2024 chempedia.info