Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines monoxide reactions

Kinetic studies on catalytic amine carbonylation reactions are scarce, although Brackman (13) has reported kinetics on a copper(I)-copper(II) catalyzed production of ureas from cyclic secondary amines using carbon monoxide-oxygen mixtures at ambient conditions. Saegusa and coworkers (14) used cuprous salts and other group IB and IIB metal compounds to car bony late piperidine to N-formylpiperidine under more severe conditions. We have published (15) a brief report involving some of the studies described in this paper. [Pg.176]

A double insertion of carbon monoxide has been observed for the amine-induced reaction of alkynes with dodecacarbonyltriiron leading to cydobutenediones (Scheme 1.7) [28]. [Pg.7]

Alternatively the amine can be introduced directly into methanol/carbon monoxide reaction systems. European production (possibly 60-70 kilotonnes per annum) is much higher than in the U.S.A. (about 15 kilotonnes per annum). [Pg.378]

Simultaneously to Orellana s results, Bhanage and cowoikm desaibed a green catalytic procedure for the aminocarbonylation of aryl iodides with amines. The reaction was carried out using water as solvent and a polymer-supported Pd-NHC catalyst (PS-Pd-NHC, XXIV Scheme 5.55), which could be easily recycled up to four consecutive runs without loss of activity or selectivity. This protocol allowed the aminocarbonylation of different aryl iodides with both aryl and alkyl primary/secondary amines using 100 psi of carbon monoxide. In aU studied examples, the corresponding amides 77 were obtained in good to excellent yields, except for aromatic secondary amines [75]. [Pg.178]

CO. Alkynes will react with carbon monoxide in the presence of a metal carbonyl (e.g. Ni(CO)4) and water to give prop>enoic acids (R-CH = CH-C02H), with alcohols (R OH) to give propenoic esters, RCH CHC02R and with amines (R NH2) to give propenoic amides RCHrCHCONHR. Using alternative catalysts, e.g. Fe(CO)5, alkynes and carbon monoxide will produce cyclopentadienones or hydroquinols. A commercially important variation of this reaction is hydroformyiation (the 0x0 reaction ). [Pg.82]

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

An equimolar mixture of carbon monoxide and chlorine reacts at 500 K under a slight positive pressure. The reaction is extremely exothermic (Ai/gQQp. = —109.7 kJ or —26.22 kcal), and heat removal is the limiting factor in reactor design. Phosgene (qv) is often produced on-site for use in the manufacture of toluene diisocyanate (see Amines, aromatic-diaminotoluenes Isocyanates, organic). [Pg.51]

The reaction produces additional hydrogen for ammonia synthesis. The shift reactor effluent is cooled and tlie condensed water is separated. The gas is purified by removing carbon dioxide from the synthesis gas by absorption with hot carbonate, Selexol, or methyl ethyl amine (MEA). After purification, the remaining traces of carbon monoxide and carbon dioxide are removed in the methanation reactions. [Pg.1126]

The idea that dichlorocarbene is an intermediate in the basic hydrolysis of chloroform is now one hundred years old. It was first suggested by Geuther in 1862 to explain the formation of carbon monoxide, in addition to formate ions, in the reaction of chloroform (and similarly, bromoform) with alkali. At the end of the last century Nef interpreted several well-known reactions involving chloroform and a base in terms of the intermediate formation of dichlorocarbene. These reactions included the ring expansion of pyrroles to pyridines and of indoles to quinolines, as well as the Hofmann carbylamine test for primary amines and the Reimer-Tiemann formylation of phenols. [Pg.58]

Borane, 1-methylbenzylaminocyanohydropyrrolyl-, 3, 84 Borane, thiocyanato-halogenohydro-, 3,88 Borane, trialkoxy-amine complexes, 3, 88 Borane, triaryl-guanidine complexes, 2,283 Borane, trifluoro-complexes Lewis acids, 3,87 van der Waals complexes, 3, 84 Borane complexes aminecarboxy-, 3,84 aminehalogeno-, 3, 84 amines, 3, 82, 101 B-N bond polarity, 3, 82 preparation, 3, 83 reactions, 3, 83 bonds B-N, 3, 88 B-O, 3, 88 B-S, 3, 88 Jt bonds, 3, 82 carbon monoxide, 3, 84 chiral boron, 3, 84 dimethyl sulfide, 3, 84 enthalpy of dissociation, 3, 82... [Pg.93]

The reaction of CDI with primary phosphines was expected to lead first to an azolide ImCOPHR, analogous to imidazole-N-carboxamide as the reaction product of primary amines and CDI. In fact, reaction of phenylphosphine with CDI leads directly to imidazole, carbonmonoxide, and tetraphenylcyclotetraphosphine (THF, reflux, 5h). In analogy to the dissociation of imidazole-AT-carboxamide into isocyanates and imidazole, this can be explained by the assumption that the first-formed ImCOPHC6H5 dissociates into an isocyanate analogue, C6H5P=C=0, which is unstable and decomposes into carbon monoxide and phenylphosphene (C6H5P) which tetramerizes. However, the intermediate formation of phenylphosphene has not yet been definitely proved. [Pg.239]


See other pages where Amines monoxide reactions is mentioned: [Pg.149]    [Pg.222]    [Pg.657]    [Pg.673]    [Pg.803]    [Pg.901]    [Pg.902]    [Pg.913]    [Pg.81]    [Pg.135]    [Pg.508]    [Pg.321]    [Pg.119]    [Pg.179]    [Pg.220]    [Pg.215]    [Pg.590]    [Pg.23]    [Pg.820]    [Pg.820]    [Pg.1037]    [Pg.276]    [Pg.501]    [Pg.112]    [Pg.29]    [Pg.191]    [Pg.235]    [Pg.106]    [Pg.224]   


SEARCH



Amines monoxide

Monoxide Reactions

© 2024 chempedia.info