Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines heteroatomic nucleophiles

For example, (C5Me5)RuCl(cod) showed high catalytic activity for allylic substitution by amines (heteroatom nucleophiles that fail with Mo and W catalysts) under extremely mild reaction conditions (0 °C, for 1 h >99% yield). The reaction is also highly regioselective to give branched N-allylamines as a major product (Eq. 5.31) [29]. [Pg.142]

Pathway 2 of Scheme 9 corresponds to one of the most interesting developments in the Beckmann rearrangement chemistry. By trapping of the electrophilic intermediate with a nucleophile (Nu ) other than water, an imine derivative 227 is produced that may be used for further transformations. Carbon or heteroatom nucleophiles have been used to trap the nitrilium intermediate. Reducing agents promote the amine formation. More than one nucleophile may be added (for example, two different Grignard reagents can be introduced at the electrophilic carbon atom). Some of the most used transformations are condensed in Scheme 11. [Pg.419]

Because of their high reactivity, these complex salts react rapidly and regiospecifically, at low temperature, with a number of carbon and heteroatomic nucleophiles, including thiols, amines, and alcohols. Finally, exposure of the double bond takes place under particularly mild conditions so that isomerization of the (3,Y-unsaturated carbonyl system may be avoided. The present scope of reactions with these vinyl cation synthons is summarized in [able I. [Pg.103]

The conjugate addition of heteronucleophiles to activated alkenes has been used very often in organic synthesis to prepare compounds with heteroatoms [3 to various activating functional groups, e.g. ketones, esters, nitriles, sulfones, sulfoxides and nitro groups. As in the Michael reaction, a catalytic amount of a weak base is usually used in these reactions (with amines as nucleophiles, no additional base is added). [Pg.30]

Terminal monoalkenes were alkylated by stabilized carbanions (p a 10-18) in the presence of 1 equiv. of palladium chloride and 2 equiv. of triethylamine, at low temperatures (Scheme l).1 The resulting unstable hydride eliminate to give the alkene (path b), or treated with carbon monoxide and methanol to produce the ester (path c).2 As was the case with heteroatom nucleophiles, attack at the more substituted alkene position predominated, and internal alkenes underwent alkylation in much lower (=30%) yield. In the absence of triethylamine, the yields were very low (1-2%) and reduction of the metal by the carbanion became the major process. Presumably, the tertiary amine ligand prevented attack of the carbanion at the metal, directing it instead to the coordinated alkene. The regiochemistry (predominant attack at the more sub-... [Pg.571]

The last of these special examples of SN reactions of heteroatom nucleophiles at the carboxyl carbon of a carboxylic acid derivative is given in Figure 6.21. There, the free carboxyl group of the aspartic acid derivative A is activated according to the in situ procedure of Figure 6.14 as a mixed carbonic acid/carboxylic acid anhydride B that is then treated with N,0-dimethylhydroxyl amine. This reagent is an N nucleophile, which is thus acylated to give the... [Pg.286]

The separation of this dicyclohexylurea urea is relatively laborious, that is, it has to be conducted by chromatography or crystallization. After the activation of carboxylic acid with carbodiimide B and subsequent acylation of a heteroatom nucleophile, one certainly obtains a urea as a side product, too. It has the structure C and thus is an amine, the separation of which can, however, be accomplished easily by extraction with aqueous hydrochloric acid. [Pg.352]

How an unsymmetrical urea can be prepared from a primary amine with a (diethyl-amino )propyl substituent (A) and ethyl isocyanate is illustrated using the example of compound C. This urea is the starting material for preparing a carbodiimide (see Figure 8.9), which activates carboxylic acids towards heteroatom nucleophiles. [Pg.355]

The isocyanate can he isolated if the Curtius degradation is carried out in an inert solvent. The isocyanate also can be reacted with a heteroatom-nucleophile either subsequently or in situ. The heteroatom nucleophile adds to the C=N double bond of the isocyanate via the mechanism of Figure 8.12. In this way, the addition of water initially results in a carbamic acid. However, all carbamic acids are unstable and immediately decarboxylate to give amines (see Figure 8.5). Because of this consecutive reaction, the Curtius rearrangement represents a valuable amine synthesis. The amines formed contain one C atom less than the acyl azide substrates. It is due to this feature that one almost often refers to this reaction as Curtius degradation, not as Curtius rearrangement. [Pg.630]

Nucleophilic attack on ( -alkene)Fp+ cations may be effected by heteroatom nucleophiles including amines, azide ion, cyanate ion (through N), alcohols, and thiols (Scheme 39). Carbon-based nucleophiles, such as the anions of active methylene compounds (malonic esters, /3-keto esters, cyanoac-etate), enamines, cyanide, cuprates, Grignard reagents, and ( l -allyl)Fe(Cp)(CO)2 complexes react similarly. In addition, several hydride sources, most notably NaBHsCN, deliver hydride ion to Fp(jj -alkene)+ complexes. Subjecting complexes of type (79) to Nal or NaBr in acetone, however, does not give nncleophilic attack, but instead results rehably in the displacement of the alkene from the iron residue. Cyclohexanone enolates or silyl enol ethers also may be added, and the iron alkyl complexes thus produced can give Robinson annulation-type products (Scheme 40). Vinyl ether-cationic Fp complexes as the electrophiles are nseful as vinyl cation equivalents. ... [Pg.2034]

Several heteroatom nucleophiles, for example, amines, alcohols, thiols, carboxylates, and dialkylphosphines, undergo Michael addition reactions with alkene- and alkyne-substituted carbene complexes. Reaction of alkyne-substituted chromium carbenes with urea affords products derived from Michael... [Pg.3221]

Intermolecular Nucleophilic Substitution with Heteroatom Nucleophiles. A patent issued in 1965 claims substitution for fluoride on fluorobenzene-Cr(CO)3 in dimethyl sulfoxide (DMSO) by a long list of nucleophiles including alkoxides (from simple alcohols, cholesterol, ethylene glycol, pinacol, and dihydroxyacetone), carboxylates, amines, and carbanions (from triphenyhnethane, indene, cyclohexanone, acetone, cyclopentadiene, phenylacetylene, acetic acid, and propiolic acid). In the reaction of methoxide with halobenzene-Cr(CO)3, the fluorobenzene complex is ca. 2000 times more reactive than the chlorobenzene complex. The difference is taken as evidence for a rate-limiting attack on the arene ligand followed by fast loss of halide the concentration of the cyclohexadienyl anion complex does not build up. In the reaction of fluorobenzene-Cr(CO)3 with amine nucleophiles, the coordinated aniline product appears rapidly at 25 °C, and a carefiil mechanistic study suggests that the loss of halide is now rate limiting. [Pg.3314]

So, in order to get the triamino (or tri-heteroatom-substituted) cyclopropenium compound, we need a Sul or Sn2 type reaction of tetrachlorocyclopropene with amine (or nucleophile). The SnI type... [Pg.50]

One synthetically interesting development in the Beckmann rearrangement is the trapping of the intermediate nitrilium ion with heteroatom nucleophiles other than water, since the resulting imine derivatives may be further manipulated into various amine derivatives. [Pg.766]

The nucleophilic addition on substituted ketenes is a well-known method to generate a prochiral enolate that can be further protonated by a chiral source of proton. Metallic nucleophiles are used under anhydrous conditions therefore, the optically pure source of proton must be added then (often in a stoichiometric amount) to control the protonation. In the case of a protic nucleophile, an alcohol, a thiol, or an amine, the chiral inductor is usually present at the beginning of the reaction since it also catalyzes the addition of the heteroatomic nucleophile before mediating the enantioselective protonation (Scheme 7.5). The use of a chiral tertiary amine as catalyst generates a zwitterionic intermediate B by nucleophilic addition on ketene A, followed by a rapid diastereoselective protonation of the enolate to acylammonium C, and then the release of the catalyst via its substitution by the nucleophile ends this reaction sequence. [Pg.175]

Scheme 7.5 Chiral tertiary amine catalyzed addition of heteroatomic nucleophiles on ketenes. Scheme 7.5 Chiral tertiary amine catalyzed addition of heteroatomic nucleophiles on ketenes.
The term Michael addition has been used to describe 1,4- (conjugate) additions of a variety of nucleophiles including organometallics, heteroatom nucleophiles such as sulfides and amines, enolates, and allylic organometals to so-called Michael acceptors such as a,p-unsaturated aldehydes, ketones, esters, nitriles, sulfoxides, and nitro compounds. Here, the term is restricted to the classical Michael reaction, which employs resonance-stabilized anions such as enolates and azaenolates, but a few examples of enamines are also included because of the close mechanistic similarities. [Pg.198]

Complexes derived from nucleophilic attack on [ / -C5H5Fe(CO)2(olefin)] complexes, hereafter abreviated [Fp(olefin)], are among the most common. Heteroatomic nucleophiles including methanol, dimethylamine, trimethylamine, benzyl amine, t-butylmercaptan, triphenylphosphine and triethylphosphite all react with [Fp(olefin)] complexes to produce stable >/ -alkyliron complexes. Monosubstituted olefin complexes react with methanol with high regiospecificity to produce air-sensitive amber oils, which, however, are well characterized ... [Pg.63]


See other pages where Amines heteroatomic nucleophiles is mentioned: [Pg.38]    [Pg.370]    [Pg.469]    [Pg.79]    [Pg.955]    [Pg.188]    [Pg.561]    [Pg.566]    [Pg.532]    [Pg.679]    [Pg.624]    [Pg.70]    [Pg.334]    [Pg.78]    [Pg.465]    [Pg.552]    [Pg.373]    [Pg.170]    [Pg.171]    [Pg.67]    [Pg.99]    [Pg.955]    [Pg.377]    [Pg.50]    [Pg.955]    [Pg.592]    [Pg.400]    [Pg.352]    [Pg.62]    [Pg.2033]   


SEARCH



Amines, nucleophilicity

Heteroatom nucleophile

Heteroatom nucleophiles

Heteroatomic nucleophiles

Nucleophile amines

Nucleophiles amines

Nucleophilic amination

Nucleophilic amines

© 2024 chempedia.info