Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amides, determination

The results of the amide determination are shown in Table IV. Hydrolysis of the kerogen produced ammonia equal to 0.052 mg. equivalents of amide... [Pg.33]

Glutamic and Aspartic Acids and Their Amides, Determination of (Baiis). 20 103... [Pg.254]

The critical role of water has also emerged as a factor to condition protein conformation. In this new model, the optimal bridging of water with the peptide backbone groups (carbonyl and amide) determines a well-known conformation termed pol)q5roline II. The specific role of the side chains is to modulate conformations by interfering to a certain degree with the solvation of the peptide backbone. Interestingly, the folded state is stabilized by... [Pg.396]

Figure 24.6 Deviation of the molar mass values for hb poly(ether amide) determined by different SEC-interpretation methods, (a) SEC-RI detection and poly(ethylene oxide) standard (b) SEC-RI detection and polystyrene standard (c)... Figure 24.6 Deviation of the molar mass values for hb poly(ether amide) determined by different SEC-interpretation methods, (a) SEC-RI detection and poly(ethylene oxide) standard (b) SEC-RI detection and polystyrene standard (c)...
AUen, D.A. Tomaso, A.E. Priest, O.P. Hindson, D.F. Hurlhurt, J.L. Mosher amides Determining the absolute stereochemistry of optically-active amines. J. Chem. Educ. 2008, 85 (5), 698-700. [Pg.56]

Any sulphate with any amide. Determine any one hydrolysis product from each. As the two species have no hydrolysis product in common, it does not matter which choose the most convenient. [Pg.195]

Alpha-sulphonated fatty ester with any other ester or amide. BEC titration in alkaline solution after acid hydrolysis gives twice the a-sulphonated ester (approximately— see above) plus any sulphonated hydrocarbon, less the other ester or amide. Determine whichever is appropriate ... [Pg.195]

Amides, determination of 102 Aminoacetate, determination of 234 Amino acids, determination of 124 Ammonium, determination of 43, 46,... [Pg.489]

Chi Z H, Chen X G, Holtz J S W and Asher S A 1998 UV resonance Raman-selective amide vibrational enhancement quantitative methodology for determining protein secondary structure Biochemistry 27 2854-64... [Pg.1175]

The choice of type of derivative should be based on whether the chloride or anhydride is aliphatic or aromatic, because this factoi largely determines the reactivity. Aliphatic acid chlorides are best converted into their anilides, as in 4 above aromatic acid chloride may be similarly converted into their anilides, or they may be converted into their amides by shaking with an excess of ammonia (p, 120). (M.ps., pp. 544-545.) Aliphatic acid anhydrides should be converted into their crystalline anilides, but aromatic acid anhydrides arc best hydrolysed to the acid, which can then be converted into one of the standard derivatives (p. 349). [Pg.366]

Xanthylamides. Dissolve 0 25 g. of xanthhydrol in 3-5 ml. of glacial acetic acid if an oil separates (as is sometimes the case with commercial material), allow to settle for a short time and decant the supernatant solution. Add 0-25 g. of the amide, shake and allow to stand. If a crystalline derivative does not separate in about 10 minutes, warm on a water bath for a period not exceeding 30 minutes, and allow to cool. Filter oflF the solid xanthylamide (9-acylamidoxanthen) and recrystallise it from dioxan - water or from acetic acid - water, dry at 80° for 15 minutes and determine the m.p. [Pg.405]

The substance is employed for the determination of urea and for the characterisation of amides (compare Section 111,110). [Pg.964]

Hydrolysis of a nitrile to an amide. Warm a solution of 1 g. of the nitrile benzyl cyanide) in 4 ml. of concentrated sulphuric acid to 80-90°, and allow the solution to stand for 5 minutes. Cool and pour the solution cautiously into 40 ml. of cold water. Filter oflT the precipitate stir it with 20 ml. of cold 5 per cent, sodium hydroxide solution and filter again. RecrystaUise the amide from dilute alcohol, and determine its m.p. Examine the solubility behaviour and also the action of warm sodium hydroxide solution upon the amide. [Pg.1077]

Only the N terminal amide bond is broken m the Edman degradation the rest of the peptide chain remains intact It can be isolated and subjected to a second Edman procedure to determine its new N terminus We can proceed along a peptide chain by beginning with the N terminus and determining each ammo acid m order The sequence is given directly by the structure of the PTH derivative formed m each successive degradation... [Pg.1135]

However, interpretation of, or even obtaining, the mass spectrum of a peptide can be difficult, and many techniques have been introduced to overcome such difficulties. These techniques include modifying the side chains in the peptide and protecting the N- and C-terminals by special groups. Despite many advances made by these approaches, it is not always easy to read the sequence from the mass spectrum because some amide bond cleavages are less easy than others and give little information. To overcome this problem, tandem mass spectrometry has been applied to this dry approach to peptide sequencing with considerable success. Further, electrospray ionization has been used to determine the molecular masses of proteins and peptides with unprecedented accuracy. [Pg.333]

The HCl by-product of the amidation reaction is neutralized by also dissolving an inorganic base in the aqueous layer in interfacial polymerization. The choice of the organic solvent plays a role in determining the properties of the polymer produced, probably because of differences in solvent goodness for the resulting polymer. Since this reaction is carried out at low temperatures, the complications associated with side reactions can be kept to a minimum. [Pg.307]

Analytical Procedures. Standard methods for analysis of food-grade adipic acid are described ia the Food Chemicals Codex (see Refs, ia Table 8). Classical methods are used for assay (titration), trace metals (As, heavy metals as Pb), and total ash. Water is determined by Kad-Fisher titration of a methanol solution of the acid. Determination of color ia methanol solution (APHA, Hazen equivalent, max. 10), as well as iron and other metals, are also described elsewhere (175). Other analyses frequendy are required for resia-grade acid. For example, hydrolyzable nitrogen (NH, amides, nitriles, etc) is determined by distillation of ammonia from an alkaline solution. Reducible nitrogen (nitrates and nitroorganics) may then be determined by adding DeVarda s alloy and continuing the distillation. Hydrocarbon oil contaminants may be determined by ir analysis of halocarbon extracts of alkaline solutions of the acid. [Pg.246]

THPC—Amide—PoIy(vinyI bromide) Finish. A flame retardant based on THPC—amide plus poly(vinyl bromide) [25951-54-6] (143) has been reported suitable for use on 35/65, and perhaps on 50/50, polyester—cotton blends. It is appUed by the pad-dry-cure process, with curing at 150°C for about 3 min. A typical formulation contains 20% THPC, 3% disodium hydrogen phosphate, 6% urea, 3% trimethylolglycouril [496-46-8] and 12% poly(vinyl bromide) soUds. Approximately 20% add-on is required to impart flame retardancy to a 168 g/m 35/65 polyester—cotton fabric. Treated fabrics passed the FF 3-71 test. However, as far as can be determined, poly(vinyl bromide) is no longer commercially available. [Pg.491]

Polyacrylamide, whether charged or not, can be detected by reactions of the amide group (67,68) however, a number of substances can interfere with the determination. If the molecular weight is high enough, flocculation of a standard slurry of clay or other substrate is a sensitive method for detecting low levels of polyacrylamide (69). Once polymers are adsorbed on a surface, many of these methods caimot be used. One exception is the use of a labeled polymer. [Pg.36]

The group of peptides known as tachykinins include substance P, substance K or neurokinin A, and neuromedin K, ie, neurokinin B, as well as a number of nonmammalian peptides. All members of this family contain the conserved carboxy-terrninal sequence Phe-X-Gly-Leu-Met-NH2, where X is an aromatic, ie, Phe or Tyr, or branched aliphatic, eg, Val or lie, amino acid. In general, this C-terminal sequence is cmcial for tachykinin activity (33) in fact, both the methionineamide and the C-terminal amide are cmcial for activity. The nature of the X residue in this sequence determines pharmacological identity (34,35) thus the substance P group contains an aromatic residue in this position, while the substance K group contains an aliphatic residue (33). [Pg.202]

Because the rules for organic nomenclature determine the priority of naming different carbon chains from their relative lengths, the systematic names for type AABB polyamides depend on the relative length of the carbon chains between the amide nitrogens and the two carbonyl functions of the polymer for aUphatic nylon-Ayy, when x < the lUPAC name is poly[imino-R imino(l2y-dioxo-R )]. When x > then the name is... [Pg.216]

Much of protein engineering concerns attempts to explore the relationship between protein stmcture and function. Proteins are polymers of amino acids (qv), which have general stmcture +H3N—CHR—COO , where R, the amino acid side chain, determines the unique identity and hence the stmcture and reactivity of the amino acid (Fig. 1, Table 1). Formation of a polypeptide or protein from the constituent amino acids involves the condensation of the amino-nitrogen of one residue to the carboxylate-carbon of another residue to form an amide, also called peptide, bond and water. The linear order in which amino acids are linked in the protein is called the primary stmcture of the protein or, more commonly, the amino acid sequence. Only 20 amino acid stmctures are used commonly in the cellular biosynthesis of proteins (qv). [Pg.194]

Hydrolysis of esters and amides by enzymes that form acyl enzyme intermediates is similar in mechanism but different in rate-limiting steps. Whereas formation of the acyl enzyme intermediate is a rate-limiting step for amide hydrolysis, it is the deacylation step that determines the rate of ester hydrolysis. This difference allows elimination of the undesirable amidase activity that is responsible for secondary hydrolysis without affecting the rate of synthesis. Addition of an appropriate cosolvent such as acetonitrile, DMF, or dioxane can selectively eliminate undesirable amidase activity (128). [Pg.345]

Several triazinyl ketones isomerize to 4-acetamidopyrimidines. TTiis is seen in the C-acylation of 2,4,6-trimethyl-l,3,5-triazine (708) with benzoyl chloride in the presence of sodium amide to give the ketone (709) which undergoes a Dimroth-like rearrangement in boiling water to afford A-(2-methyl-6-phenylpyrimidin-4-yl)acetamide (710) it can be seen that the acylating agent determines the identity of the 6-substituent 64JHC145). [Pg.120]


See other pages where Amides, determination is mentioned: [Pg.100]    [Pg.365]    [Pg.236]    [Pg.100]    [Pg.365]    [Pg.236]    [Pg.587]    [Pg.676]    [Pg.687]    [Pg.1071]    [Pg.352]    [Pg.116]    [Pg.1127]    [Pg.265]    [Pg.181]    [Pg.316]    [Pg.204]    [Pg.220]    [Pg.223]    [Pg.226]    [Pg.267]    [Pg.399]    [Pg.523]    [Pg.71]    [Pg.199]    [Pg.492]   
See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Rate determining amides

Rate determining step amide hydrolysis

© 2024 chempedia.info