Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isomerization of ketone

Isomerization of ketones via sulfonylliydrazones, ethylene derivatives, and glycol monoacetates... [Pg.54]

Trimethylacetaldehyde passed at 300° under Ng through H3P04-on-Ghromosorb W (a kieselguhr product) — 3-methyl-2-butanone. Y almost 100%. F. e., mostly isomerization of ketones, and f. catalyst supports, s. W. H. Gorkern and A. Fry, Am. Soc. 89, 5888 (1967). [Pg.178]

The 3.8-nonadienoate 91, obtained by dimerization-carbonylation, has been converted into several natural products. The synthesis of brevicomin is described in Chapter 3, Section 2.3. Another royal jelly acid [2-decenedioic acid (149)] was prepared by cobalt carbonyl-catalyzed carbonylation of the terminal double bond, followed by isomerization of the double bond to the conjugated position to afford 149[122], Hexadecane-2,15-dione (150) can be prepared by Pd-catalyzed oxidation of the terminal double bond, hydrogenation of the internal double bond, and coupling by Kolbe electrolysis. Aldol condensation mediated by an organoaluminum reagent gave the unsaturated cyclic ketone 151 in 65% yield. Finally, the reduction of 151 afforded muscone (152)[123]. n-Octanol is produced commercially as described beforc[32]. [Pg.445]

Acid catalyzed hydration (Section 9 12) Water adds to the triple bond of alkynes to yield ketones by way of an unstable enol intermediate The enol arises by Markovnikov hydration of the alkyne Enol formation is followed by rapid isomerization of the enol to a ketone... [Pg.385]

Acyl-pyrroles, -furans and -thiophenes in general have a similar pattern of reactivity to benzenoid ketones. Acyl groups in 2,5-disubstituted derivatives are sometimes displaced during the course of electrophilic substitution reactions. iV-Alkyl-2-acylpyrroles are converted by strong anhydrous acid to A-alkyl-3-acylpyrroles. Similar treatment of N-unsubstituted 2- or 3-acyIpyrroles yields an equilibrium mixture of 2- and 3-acylpyrroles pyrrolecarbaldehydes also afford isomeric mixtures 81JOC839). The probable mechanism of these rearrangements is shown in Scheme 65. A similar mechanism has been proposed for the isomerization of acetylindoles. [Pg.73]

Schmidt reaction of ketones, 7, 530 from thienylnitrenes, 4, 820 tautomers, 7, 492 thermal reactions, 7, 503 transition metal complexes reactivity, 7, 28 tungsten complexes, 7, 523 UV spectra, 7, 501 X-ray analysis, 7, 494 1 H-Azepines conformation, 7, 492 cycloaddition reactions, 7, 520, 522 dimerization, 7, 508 H NMR, 7, 495 isomerization, 7, 519 metal complexes, 7, 512 photoaddition reactions with oxygen, 7, 523 protonation, 7, 509 ring contractions, 7, 506 sigmatropic rearrangements, 7, 506 stability, 7, 492 N-substituted mass spectra, 7, 501 rearrangements, 7, 504 synthesis, 7, 536-537... [Pg.524]

HS(CH2) SH, BF3-Et20, CH2CI2, 25°, 12 h, high yield, n = 2, n = 3. In a,/3-unsaturated ketones the olefin does not isomerize to the /3,7-position as occurs when an ethylene ketal is prepared. Aldehydes are selectively protected in the presence of ketones except when steric factors force the ketone to be protected as in the example below." A TBDMS group is not stable to these conditions. ... [Pg.201]

The dienol is unstable, and two separate processes have been identified for ketonization. These are a 1,5-sigmatropic shift of hydrogen leading back to the enone and a base-catalyzed proton transfer which leads to the / ,y-enone. The deconjugated enone is formed because of the kinetic preference for reprotonation of the dienolate at the a carbon. Photochemical deconjugation is a synthetically useful way of effecting isomerization of a,) -unsaturated ketones and esters to the j ,y-isomers. [Pg.759]

Interestingly enough, both protons at C-11 are exchanged quite readily in 12-keto steroids. In these compounds C-11 is the only possible enolization site where the axial (/3) proton is probably expelled first. During ketonization, the deuteron attack is more likely to occur from the less hindered a-side. By this sequence the proton which was originally at the lla-equato-rial position becomes axial and readily available for expulsion in the next enolization step. Thus, isomerization of the C-11 hydrogens may be an important reason for the facile exchange at this position. (For a more detailed discussion of the mechanism of enolization and ketonization reactions, see ref 114.)... [Pg.150]

These are usually obtained from the isomeric conjugated ketone, and are sometimes useful as intermediates, offering an alternative to enol derivatives. They may also be formed as a result of double bond introduction or by oxidation of homoallylic alcohols if so the conditions must be mild because they generally represent a less stable isomer. [Pg.267]

The bromination of 4,5-j -dihydrocortisone acetate in buffered acetic acid does not proceed very cleanly (<70%) and, in an attempt to improve this step in the cortisone synthesis, Holysz ° investigated the use of dimethylformamide (DMF) as a solvent for bromination. Improved yields were obtained (although in retrospect the homogeneity and structural assignments of some products seem questionable.) It was also observed that the combination of certain metal halides, particularly lithium chloride and bromide in hot DMF was specially effective in dehydrobromination of 4-bromodihydrocortisone acetate. Other amide solvents such as dimethylacetamide (DMA) and A-formylpiperidine can be used in place of DMF. It became apparent later that this method of dehydrobromination is also prone to produce isomeric unsaturated ketones. When applied to 2,4-dibromo-3-ketones, a substantial amount of the A -isomer is formed. [Pg.290]

Despite the increasing information on the photochemistry of 2,4-dienones and other unsaturated ketones, as well as on the ring-chain valence isomerism of halogen-substituted pyran and dihydi opyran systems,the data are still very scarce. The intermediate formation of pyrans valence-isomeric with unsaturated carbonyl compounds in the pyridine syntheses based on reactions of ammonia with aldehydes or ketones, advocated by various authors (cf. Section II,B,2,f), is still rather speculative. (See also Section II,B,2,e for the valence isomerism of 5-chloro-2,4-dienones with pyrylium chlorides.)... [Pg.266]

Isomerization of the double bond in allylic alcohols may result in aldehydes or ketones (I07a). The reaction can have synthetic value (8bJ3c). If isomerization is desired, palladium is probably the preferred catalyst, operated best under hydrogen-poor conditions (/47fl). Allylic ethers can be converted to alcohols by isomerization with (Ph3P)3RhCl at pH 2 to the vinyl ether, which undergoes hydrolysis (36a). [Pg.168]

An interesting consequence of the base-catalyzed isomerization of unsatu-rated ketones described in Problem 22.37 is that 2-substituted 2-cyclopen tenones can be interconverted with 5-sub tituted 2-cyclopentenones. Propose a mechanism for this isomerization. [Pg.871]

Glycolysis is a ten-step process that begins with isomerization of glucose from its cyclic hemiacetal form to its open-chain aldehyde form—a reverse nucleophilic addition reaction. The aldehyde then undergoes tautomerixa-tion to yield an enol, which undergoes yet another tautomerization to give the ketone fructose. [Pg.903]

Interestingly, the use of (S,S)-bis(l-phenyl)ethylamide as base with epoxide 70 predominantly yields ketone 71. Where the possibility for competing C-H insertion is removed (e. g., with epoxide 73), isomerization to ketone 74 occurs in excellent yield. [Pg.154]

The effect of substrate structure on product profile is further illustrated by the reactions of cis- and trons-stilbene oxides 79 and 83 with lithium diethylamide (Scheme 5.17) [32]. Lithiated cis-stilbene oxide 80 rearranges to enolate 81, which gives ketone 82 after protic workup, whereas with lithiated trans-stilbene oxide 84, phenyl group migration results in enolate 85 and hence aldehyde 86 on workup. Triphenylethylene oxide 87 underwent efficient isomerization to ketone 90 [32]. [Pg.154]

The isomerization of acetylenic oxiranes cis- and trows-91 to allenic ketone 94 has recently been described (Scheme 5.18). It is proposed that the rearrangement proceeds via a dilithium ynenolate [33]. [Pg.155]


See other pages where Isomerization of ketone is mentioned: [Pg.112]    [Pg.60]    [Pg.31]    [Pg.55]    [Pg.493]    [Pg.375]    [Pg.72]    [Pg.615]    [Pg.356]    [Pg.365]    [Pg.112]    [Pg.60]    [Pg.31]    [Pg.55]    [Pg.493]    [Pg.375]    [Pg.72]    [Pg.615]    [Pg.356]    [Pg.365]    [Pg.233]    [Pg.195]    [Pg.58]    [Pg.504]    [Pg.385]    [Pg.519]    [Pg.313]    [Pg.313]    [Pg.324]    [Pg.324]    [Pg.100]    [Pg.204]    [Pg.1070]    [Pg.551]    [Pg.769]    [Pg.220]    [Pg.153]    [Pg.273]   


SEARCH



Isomeric ketones

© 2024 chempedia.info