Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amide solution synthesis

Additives such as HOBt or DMAP can be used while attached to a polymer. Thus, the polymeric //-benzyl-1-hydroxybenzotriazole-6-sulfona-mide (19) [47] and the polymeric 1-hydroxybenzotriazole (20) [48] have been shown to be highly efficient for the solution synthesis of amides. The efficiency of 19 could be attributed to its high acidity, conferred by the sulfonyl moiety. The procedure for amide construction involves the formation of an activated ester on the derivatized polymer followed, in a second step, by treatment with an amine to generate the amide in solution. This HOBt-supported polymer has also been applied for the preparation of N-hydroxysuccinimide esters, useful for the modification of proteins [49]. Polymeric DMAP is a less basic compound and generally gives very low racemization [50]. [Pg.282]

Different synthetic methods which were used for amide and thioamide bond formation in solution synthesis were transferred in sohd-state ball-milling conditions. These include peptide-coupling reagents, addition of cumulenes, oxidative amina-tion, and acylation. [Pg.158]

This compound is similar in type to the sodium acet-bromoamide, CHjCONNaBr, which is an intermediate compound in Hofmann s amine synthesis (p. 127). If a weak acid (such as acetic acid) is now added to the solution of the chloro-sodio-amide, the latter compound reacts with the hypo-chlorous acid giving the sulphon-dichloro amide, which being insoluble in water, rapidly separates ... [Pg.252]

The formation of the above anions ("enolate type) depend on equilibria between the carbon compounds, the base, and the solvent. To ensure a substantial concentration of the anionic synthons in solution the pA" of both the conjugated acid of the base and of the solvent must be higher than the pAT -value of the carbon compound. Alkali hydroxides in water (p/T, 16), alkoxides in the corresponding alcohols (pAT, 20), sodium amide in liquid ammonia (pATj 35), dimsyl sodium in dimethyl sulfoxide (pAT, = 35), sodium hydride, lithium amides, or lithium alkyls in ether or hydrocarbon solvents (pAT, > 40) are common combinations used in synthesis. Sometimes the bases (e.g. methoxides, amides, lithium alkyls) react as nucleophiles, in other words they do not abstract a proton, but their anion undergoes addition and substitution reactions with the carbon compound. If such is the case, sterically hindered bases are employed. A few examples are given below (H.O. House, 1972 I. Kuwajima, 1976). [Pg.10]

Solvent for Displacement Reactions. As the most polar of the common aprotic solvents, DMSO is a favored solvent for displacement reactions because of its high dielectric constant and because anions are less solvated in it (87). Rates for these reactions are sometimes a thousand times faster in DMSO than in alcohols. Suitable nucleophiles include acetyUde ion, alkoxide ion, hydroxide ion, azide ion, carbanions, carboxylate ions, cyanide ion, hahde ions, mercaptide ions, phenoxide ions, nitrite ions, and thiocyanate ions (31). Rates of displacement by amides or amines are also greater in DMSO than in alcohol or aqueous solutions. Dimethyl sulfoxide is used as the reaction solvent in the manufacture of high performance, polyaryl ether polymers by reaction of bis(4,4 -chlorophenyl) sulfone with the disodium salts of dihydroxyphenols, eg, bisphenol A or 4,4 -sulfonylbisphenol (88). These and related reactions are made more economical by efficient recycling of DMSO (89). Nucleophilic displacement of activated aromatic nitro groups with aryloxy anion in DMSO is a versatile and useful reaction for the synthesis of aromatic ethers and polyethers (90). [Pg.112]

The checkers used 16.8 g. of Eastman Kodak Company cyanamide (P1995) without further purification. A convenient method of preparing cyanamide from commercial calcium cyan-amide has been described. According to the submitters, an aqueous solution of crude cyanamide is satisfactory in the present synthesis and is obtained by adapting this published procedure as follows. [Pg.10]

The synthesis of meconin has been referred to already (p. 201). Cotarnine has been synthesised by Salway from myristicin (I) as a starting-point. This was transformed into jS-3-methoxy-4 5-methylenedioxy-phenylpropionic acid (II), the amide of which was converted by Hofmann s reaction into )S-3-methoxy-4 5-methylenedioxyphenylethylamine, and the phenylacetyl derivative (HI) of this condensed, by heating it in xylene solution with phosphoric oxide, giving rise to the two possible dihydroiso-quinoline derivatives. The first of these substances, 8-methoxy-6 7-methylenedipxy-1-benzyl-3 4-dihydroiioquinoline (IV), on conversion into the methochloride and reduction with tin and hydrochloric acid, gave... [Pg.204]

Amine-terminated siloxane oligomers have also been utilized in the synthesis of various siloxane-amide and siloxane-imide copolymers, High molecular weight siloxane-amide copolymers have been synthesized by the solution or interfacial co-polymerization of siloxane oligomers with sebacoyl chloride or terephthaloyl chloride respectively 1S5,165). In some reactions diamine chain extenders have also been utilized. Thermal and dynamic mechanical characterization of these copolymers have shown the formation of multiphase systems160). Compression molded films displayed very good elastomeric properties. [Pg.33]

In most of the studies discussed above, except for the meta-linked diamines, when the aromatic content (dianhydride and diamine chain extender), of the copolymers were increased above a certain level, the materials became insoluble and infusible 153, i79, lsi) solution to this problem with minimum sacrifice in the thermal properties of the products has been the synthesis of siloxane-amide-imides183). In this approach pyromellitic acid chloride has been utilized instead of PMDA or BTDA and the copolymers were synthesized in two steps. The first step, which involved the formation of (siloxane-amide-amic acid) intermediate was conducted at low temperatures (0-25 °C) in THF/DMAC solution. After purification of this intermediate thin films were cast on stainless steel or glass plates and imidization was obtained in high temperature ovens between 100 and 300 °C following a similar procedure that was discussed for siloxane-imide copolymers. Copolymers obtained showed good solubility in various polar solvents. DSC studies indicated the formation of two-phase morphologies. Thermogravimetric analysis showed that the thermal stability of these siloxane-amide-imide systems were comparable to those of siloxane-imide copolymers 183>. [Pg.35]

The solid-phase synthesis of the 2(lff)-pyrazinone scaffold is based on a Strecker reaction of commercially available Wang amide linker with appropriate aldehyde and tetramethylsilyl (TMS) cyanide, followed by cyclization of a-aminonitrile with oxalyl chloride resulting in the resin linked pyrazinones. This approach allows a wide diversity at the C-6-position of pyrazinone scaffold (Scheme 35, Table 1). As it has been shown for the solution phase, the sensitive imidoyl chloride moiety can easily undergo an addition/elimination reaction with in situ-generated sodium methoxide affording the resin-linked... [Pg.292]

Much more important than these reactions, however, are the reactions of CDI and its analogues with carboxylic acids, leading to AAacylazoles, from which (by acyl transfer) esters, amides, peptides, hydrazides, hydroxamic acids, as well as anhydrides and various C-acylation products may be obtained. The potential of these and other reactions will be shown in the following chapters. In most of these reactions it is not necessary to isolate the intermediate AAacylazoles. Instead, in the normal procedure the appropriate nucleophile reactant (an alcohol in the ester synthesis, or an amino acid in the peptide synthesis) is added to a solution of an AAacylimidazole, formed by reaction of a carboxylic acid with CDI. Thus, CDI and its analogues offer an especially convenient vehicle for activation of... [Pg.22]


See other pages where Amide solution synthesis is mentioned: [Pg.287]    [Pg.248]    [Pg.425]    [Pg.194]    [Pg.81]    [Pg.89]    [Pg.145]    [Pg.5]    [Pg.19]    [Pg.317]    [Pg.41]    [Pg.282]    [Pg.307]    [Pg.120]    [Pg.156]    [Pg.108]    [Pg.126]    [Pg.130]    [Pg.133]    [Pg.164]    [Pg.107]    [Pg.232]    [Pg.340]    [Pg.233]    [Pg.204]    [Pg.384]    [Pg.258]    [Pg.30]    [Pg.1245]    [Pg.291]    [Pg.211]    [Pg.30]    [Pg.40]    [Pg.199]    [Pg.31]    [Pg.347]    [Pg.491]    [Pg.142]    [Pg.119]    [Pg.305]   
See also in sourсe #XX -- [ Pg.574 ]




SEARCH



Amide synthesis

SYNTHESIS SOLUTIONS

© 2024 chempedia.info