Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amidation Biological

One of the virtues of the Fischer indole synthesis is that it can frequently be used to prepare indoles having functionalized substituents. This versatility extends beyond the range of very stable substituents such as alkoxy and halogens and includes esters, amides and hydroxy substituents. Table 7.3 gives some examples. These include cases of introduction of 3-acetic acid, 3-acetamide, 3-(2-aminoethyl)- and 3-(2-hydroxyethyl)- side-chains, all of which are of special importance in the preparation of biologically active indole derivatives. Entry 11 is an efficient synthesis of the non-steroidal anti-inflammatory drug indomethacin. A noteworthy feature of the reaction is the... [Pg.61]

Section 15 11 Oxidation of alcohols to aldehydes and ketones is a common biological reaction Most require a coenzyme such as the oxidized form of nicotin amide adenine dmucleotide (NAD" )... [Pg.655]

The chemistry of carboxylic acids is the central theme of this chapter The impor tance of carboxylic acids is magnified when we realize that they are the parent com pounds of a large group of derivatives that includes acyl chlorides acid anhydrides esters and amides Those classes of compounds will be discussed m Chapter 20 Together this chapter and the next tell the story of some of the most fundamental struc tural types and functional group transformations m organic and biological chemistry... [Pg.791]

Small quantities of spilled form amide can be washed away with plenty of water. Larger amounts should be absorbed appropriately or pumped into containers for proper disposal by incineration or biological degradation in a sewage water treatment plant. [Pg.510]

Biosynthesis. Two closely related genes encode the three mammalian tachykinins. The preprotachykinin A gene encodes both substance P and substance K, while the preprotachykinin B gene encodes neuromedin K (45—47). The active sequences are flanked by the usual double-basic amino acid residues, and the carboxy-terrninal amino acid is a glycine residue which is decarboxylated to an amide. As with most neuropeptide precursors, intermediates in peptide processing can be detected, but their biological activities are not clear (ca 1994). [Pg.202]

AJ-Vlayl polymers may be used for the preparation of semiconductors (qv). Derivatives of others have biological activity, eg, a derivative of 2-phenyl-1-vinylpyrrole, 2-phen54-l-(proparg54oxyethyl)pyrrole, stimulates motor activity andiacreases excitation, etc (42) (see Vinyl polymers, M-vinyl amides). [Pg.358]

Conversion of the nitrile to the amide has been achieved by both chemical and biological means. Several patents have described the use of modified Raney nickel catalysts ia this appHcation (25,26). Also, alkaH metal perborates have demonstrated their utiHty (27). Typically, the hydrolysis is conducted ia the presence of sodium hydroxide (28—31). Owiag to the fact that the rate of hydrolysis of the nitrile to the amide is fast as compared to the hydrolysis of the amide to the acid, good yields of the amide are obtained. Other catalysts such as magnesium oxide (32), ammonia (28,29,33), and manganese dioxide (34) have also been employed. [Pg.49]

For more specific analysis, chromatographic methods have been developed. Using reverse-phase columns and uv detection, hplc methods have been appHed to the analysis of nicotinic acid and nicotinamide in biological fluids such as blood and urine and in foods such as coffee and meat. Derivatization techniques have also been employed to improve sensitivity (55). For example, the reaction of nicotinic amide with DCCI (AT-dicyclohexyl-0-methoxycoumarin-4-yl)methyl isourea to yield the fluorescent coumarin ester has been reported (56). After separation on a reversed-phase column, detection limits of 10 pmol for nicotinic acid have been reported (57). [Pg.51]

All of the naturally-occurring monobactams discovered as of this writing have exhibited poor antibacterial activity. However, as in the case of the penicillins and cephalosporins, alteration of the C-3 amide side chain led to many potent new compounds (12). Furthermore, the monobactam nucleus provides a unique opportunity to study the effect of stmctural modifications at the N-1 and C-4 positions of the a2etidinone ring on biological activity. In contrast to the bicycHc P-lactams, these positions on the monocyclic ring system are readily accessible by synthesis. [Pg.62]

Conversion of the C-2 amide to a biologically inactive nitrile, which can be further taken via a Ritter reaction (29) to the corresponding alkylated amide, has been accomphshed. When the 6-hydroxyl derivatives are used, dehydration occurs at this step to give the anhydro amide. Substituting an A/-hydroxymethylimide for isobutylene in the Ritter reaction yields the acylaminomethyl derivative (30). Hydrolysis affords an aminomethyl compound. Numerous examples (31—35) have been reported of the conversion of a C-2 amide to active Mannich adducts which are extremely labile and easily undergo hydrolysis to the parent tetracycline. This reverse reaction probably accounts for the antibacterial activity of these tetracyclines. [Pg.178]

The unexpected biological activities of tetracyclines, such as 5a-epi-6-epitetracychne [19543-88-5] C22H24N20g, and 7-chloro-5a,lla-dehydro-6-epitetracycline [22688-60-4] C22H22ClN20g, make predicting stmcture-activity relationships difficult (64). Aside from the C-2 amide Mannich-base derivatives, variation at other centers in the molecule, ie, C-4, 4a, 5a, 12a, decreases the biological activity. [Pg.180]

The amide linkage between monomer units in a protein is called a peptide bond. Peptides and polypeptides, which often exhibit biological activity (see Antibiotics, peptides Neuroregulators), are smaller than proteins. Although the differentiation between polypeptide and protein is somewhat arbitrary, the usual distinction is drawn around 100 monomer units. Proteins are also characterized by higher levels of stmcture resulting from internal interactions. [Pg.94]

Caprolactam is an amide and, therefore, undergoes the reactions of this class of compounds. It can be hydrolyzed, Ai-alkylated, O-alkylated, nitrosated, halogenated, and subjected to many other reactions (3). Caprolactam is readily converted to high molecular weight, linear nylon-6 polymers. Through a complex series of reactions, caprolactam can be converted to the biologically and nutritionally essential amino acid L-lysine (10) (see Amino acids). [Pg.428]

Tetrahydroharman, m.p. 179-80°, has been prepared by a number of workers by a modification of this reaction, viz., by the interaction of tryptamine (3-)5-aminoethylindole) with acetaldehyde or paraldehyde and Hahn et al. have obtained a series of derivatives of tetrahydronorharman by the use of other aldehydes and a-ketonic acids under biological conditions of pH and temperature, while Asahina and Osada, by the action of aromatic acid chlorides on the same amine, have prepared a series of amides from which the corresponding substituted dihydronorharmans have been made by effecting ring closure with phosphorus pentoxide in xylene solution. [Pg.491]

Acylation of a sulfonamide on the amide nitrogen serves to remove the sometimes objectionable taste of these drugs. Reac-I ion of intermediate, 154, with acetic anhydride followed by reduction of the nitro group affords acetyl methoxyprazine (156). The last, which has much the same biologic action as Mie parent compound, is used for oral administration in syrups. [Pg.131]

A heterocyclic ring may be used in place of one of the benzene rings without loss of biologic activity. The first step in the synthesis of such an agent starts by Friedel-Crafts-like acylation rather than displacement. Thus, reaction of sulfenyl chloride, 222, with 2-aminothiazole (223) in the presence of acetic anhydride affords the sulfide, 224. The amine is then protected as the amide (225). Oxidation with hydrogen peroxide leads to the corresponding sulfone (226) hydrolysis followed by reduction of the nitro group then affords thiazosulfone (227). ... [Pg.141]

It was found that the spectroscopic and biological data on the amide of kasugamycinic acid were different from those of kasugamycin. [Pg.34]

Carboxylic acids, RC02H, occupy a central place among carbonyl compounds. Not only are they valuable in themselves, they also serve as starting materials for preparing numerous acyl derivatives such as acid chlorides, esters, amides, and thioesters. In addition, carboxylic acids are present in the majority of biological pathways. We ll look both at acids and at their close relatives, nitriles (RC=N), in this chapter and at acyl derivatives in the next chapter. [Pg.751]

Closely related to the carboxylic acids and nitriles discussed in the previous chapter are the carboxylic acid derivatives, compounds in which an acyl group is bonded to an electronegative atom or substituent that can net as a leaving group in a substitution reaction. Many kinds of acid derivatives are known, but we ll be concerned primarily with four of the more common ones acid halides, acid anhydrides, esters, and amides. Esters and amides are common in both laboratory and biological chemistry, while acid halides and acid anhydrides are used only in the laboratory. Thioesters and acyl phosphates are encountered primarily in biological chemistry. Note the structural similarity between acid anhydrides and acy) phosphates. [Pg.785]


See other pages where Amidation Biological is mentioned: [Pg.871]    [Pg.324]    [Pg.140]    [Pg.871]    [Pg.324]    [Pg.140]    [Pg.587]    [Pg.343]    [Pg.38]    [Pg.39]    [Pg.204]    [Pg.515]    [Pg.95]    [Pg.22]    [Pg.179]    [Pg.137]    [Pg.327]    [Pg.175]    [Pg.286]    [Pg.301]    [Pg.29]    [Pg.251]    [Pg.449]    [Pg.82]    [Pg.249]    [Pg.75]    [Pg.116]    [Pg.173]    [Pg.215]    [Pg.39]    [Pg.75]   


SEARCH



© 2024 chempedia.info