Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum oxidation state

Some metals used as metallic coatings are considered nontoxic, such as aluminum, magnesium, iron, tin, indium, molybdenum, tungsten, titanium, tantalum, niobium, bismuth, and the precious metals such as gold, platinum, rhodium, and palladium. However, some of the most important poUutants are metallic contaminants of these metals. Metals that can be bioconcentrated to harmful levels, especially in predators at the top of the food chain, such as mercury, cadmium, and lead are especially problematic. Other metals such as silver, copper, nickel, zinc, and chromium in the hexavalent oxidation state are highly toxic to aquatic Hfe (37,57—60). [Pg.138]

The ground state distribution of electrons in the aluminum atom is lT2T2 3T3/). The oxidation state of aluminum is +3, except at high temperatures where monovalent species such as AIQ, AIF, and AI2 have been spectrally identified At lower temperatures, these compounds disproportionate... [Pg.135]

Confusion arises ia the nomenclature of alum because double salt compounds, M(I)Al(SOwhere M is ia the +1 oxidation state, have also traditionally been called alums. In particular, potassium aluminum sulfate [15007-61 -1] KAl(SOreferred to as ordinary alum or potash alum. [Pg.174]

Most metal carbonyls are synthesized in nonaqueous media. Reactive metals, such as sodium (85), magnesium (105), zinc (106), and aluminum (107,108), are usually used as reducing agents. Solvents that stabilize low oxidation states of metals and act as electron-transfer agents are commonly employed. These include diethyl ether, tetrahydrofiiran, and 2-methoxyethyl ether (diglyme). [Pg.68]

The measures of solid state reactivity to be described include experiments on solid-gas, solid-liquid, and solid-solid chemical reaction, solid-solid structural transitions, and hot pressing-sintering in the solid state. These conditions are achieved in catalytic activity measurements of rutile and zinc oxide, in studies of the dissolution of silicon nitride and rutile, the reaction of lead oxide and zirconia to form lead zirconate, the monoclinic to tetragonal transformation in zirconia, the theta-to-alpha transformation in alumina, and the hot pressing of aluminum nitride and aluminum oxide. [Pg.161]

Acid-treated clays were the first catalysts used in catalytic cracking processes, but have been replaced by synthetic amorphous silica-alumina, which is more active and stable. Incorporating zeolites (crystalline alumina-silica) with the silica/alumina catalyst improves selectivity towards aromatics. These catalysts have both Fewis and Bronsted acid sites that promote carbonium ion formation. An important structural feature of zeolites is the presence of holes in the crystal lattice, which are formed by the silica-alumina tetrahedra. Each tetrahedron is made of four oxygen anions with either an aluminum or a silicon cation in the center. Each oxygen anion with a -2 oxidation state is shared between either two silicon, two aluminum, or an aluminum and a silicon cation. [Pg.70]

The four oxygen anions in the tetrahedron are balanced by the -i-4 oxidation state of the silicon cation, while the four oxygen anions connecting the aluminum cation are not balanced. This results in -1 net charge, which should be balanced. Metal cations such as Na", Mg ", or protons (H" ) balance the charge of the alumina tetrahedra. A two-dimensional representation of an H-zeolite tetrahedra is shown ... [Pg.70]

As stated above, a typical zeolite consists of silicon and aluminum atoms that are tetrahedrally joined by four oxygen atoms. Silicon is in a +4 oxidation state therefore, a tetrahedron containing silicon is neutral in charge. In contrast, aluminum is in a +3 oxidation state. This indicates that each tetrahedron containing aluminum has a net charge of -1, which must be balanced by a positive ion. [Pg.86]

Zeolites are crystalline alumina-silicates having a regular pore structure. Their basic building blocks are silica and alumina tetrahedra. Each tetrahedron consists of silicon or aluminum atoms at the center of the tetrahedron with oxygen atoms at the comers. Because silicon and aluminum are in a +4 and +3 oxidation state, respectively, a net charge of -1 must be balanced by a cation to maintain electrical neutrality. [Pg.130]

Aluminum (third most abundant element) is found as the Al+ ion in oxides and as the complex ion AlFImportant minerals are bauxite, which is best described as a hydrated aluminum oxide, Al203-.xH20, and cryolite, NaaAlFs. The element is readily oxidized and is not found in an uncombined state in nature. [Pg.373]

The function of the tetraethyltin is to create vacant sites so that coordination of alkene molecules becomes possible, and to change the oxidation state of the tungsten atom from +6 to +4. Similar behavior of the aluminum compound in the system WCL-CgHsAlCb is not probable, because it has been demonstrated that WCle-AlClg is also an active catalyst (22, 44), which suggests that C2H5AICI2 functions as a Lewis acid. Vacant sites can be created by a Lewis acid as follows ... [Pg.152]

B Aluminum forms an amphoteric oxide in which it has the oxidation state +3 therefore, aluminum is the element. 14.3B Hydrogen is a nonmetal and a diatomic gas at room temperature. It has an intermediate electronegativity (x — 2.2), so it forms covalent bonds with nonmetals and forms anions in combination with metals. In contrast, Group 1 elements are solid metals that have low electronegativities and form cations in combination with nonmetals. [Pg.979]

The diazaphosphane or aminoiminophosphane ligands with a NPN framework are another subclass of cyclophosphazenes. These compounds with both phosphorus in oxidation state (111) [104-110] and (V) [111-112] have been employed in the synthesis of four membered heterocycles and coordination chemistry with group 13 derivatives. Several complexes of trivalent phosphorus derivatives with both aluminum halide and alkyls are known as illustrated for 48 in Scheme 21 [113-119]. The structure determination of 48 confirms the formation of a four membered metallacycle [116, 117],... [Pg.111]

Aluminum is unique among the main group metals. All other p block metals have filled valence d orbitals. As a consequence, these metals have much in common with their transition metal neighbors. They tend to be soft Lewis bases. Aluminum, on the other hand, lacks a filled d orbital set and is a hard Lewis acid that has more in common with its nearest neighbor, magnesium. Highly reactive, aluminum is found naturally in the +3 oxidation state and is difficult to reduce to the pure metal. Thus, although tin and lead have been known since antiquity, aluminum was not discovered until 1825 and did not become a common commodity until more than 60 years later. [Pg.1512]

Eehrmann R, Bjerrum NJ, Poulsen EW (1978) Lower oxidation states of sulfur. 1. Spectrophotometric study of the sulfur-chlorine system in molten sodium chloride-aluminum chloride (37 63 mol%) at 150 °C. Inorg Chem 17 1195-1200... [Pg.73]

The anodic oxidation of sheet aluminum has been used for a long time to protect aluminum against corrosion by a well-adhering oxide layer. Porous oxide layers are formed if acid electrolytes are used that can redissolve the aluminum oxide (mostly sulfuric or phosphoric acid). A compact oxide layer is formed at the beginning of the electrolysis (Fig. 20.3). Simultaneously, the current decreases, due to the electric resistance of the oxide. Subsequently follows a process in which the oxide is redissolved by the acid, and the current increases until it reaches a steady state. The electrochemical oxidation continues to take place with formation of pores. At the end of a pore, where it has the largest curvature, the electric field has its largest gradient and the process of redisolution is fastest. [Pg.242]

We found highly active catalysts, which are shown in Table I (3). The main component is a stable carboxylate of uranium in the oxidation state of +4, in combination with a Lewis acid and an aluminum alkyl, e.g. uranium octoate, aluminum tribromide, and triisobutylaluminum in a molar ratio of 1 0.8 25. The catalyst is usually aged for at least 2 hours at room temperature. [Pg.58]

The primary cause behind most electrical failure modes of elkos is heat. That is actually a good thing, because you can even exceed its rated voltage by about 20% for a short time (about Is), just as long as the resulting heat buildup does not catch up with you. The capacitor also usually fails to open (what did you expect if its final state is called smithereens ). Actually, the aluminum oxide layer has self-recovering properties, and that is why shorted failures are very rare—it can usually correct a tiny short almost immediately. [Pg.98]

The catalyst is normally contained on a ceramic substrate. These ceramics are extruded in a malleable state and then fired in ovens. The process consists of starting with a ceramic and depositing an aluminum oxide coating. The aluminum oxide makes the ceramic, which is fairly smooth, have a number of bumps. On those bumps a noble metal catalyst, such as platinum, palladium, or rubidium, is deposited. The active site, wherever the noble metal is deposited, is where the conversion will actually take place. An alternate to the ceramic substrate is a metallic substrate. In this process, the aluminum oxide is deposited on the metallic substrate to give the wavy contour. The precious metal is then deposited onto the aluminum oxide. Both forms of catalyst are called monoliths. [Pg.256]

The Smectite Clays. The smectite-type clays are distinctive in that they expand and cause significant destruction to synthetic (human-made) structures. In this type of 2 1 clay, isomorphous substitution occurs in the aluminum sheet. If there is substitution of lower-oxidation-state metal such as magnesium, there will be an unsatisfied pair of bonding electrons in the interior of the crystal and there will be no noticeable change in the surface. Because the charge is in the interior of the crystal, its attraction for cations is diminished by distance. Thus, smectite crystals are not held together strongly by cations and are able to incorporate more water and ions between sheets when the environment is wet and less when it is dry. [Pg.69]

The most common simple cations in the soil solution are calcium (Ca2+), magnesium (Mg2+), potassium (K+), and sodium (Na+). Other alkali and alkaline-earth elements, when present, will be as simple cations also. Iron, aluminum, copper, zinc, cobalt, manganese, and nickel are also common in soil. Iron is present in both the ferrous (Fe2+) and ferric (Fe3+) states, while aluminum will be present as Al3+. Copper, zinc, cobalt, and nickel can all be present in one or both of their oxidations states simultaneously. Manganese presents a completely different situation in that it can exist in several oxidation states simultaneously. [Pg.120]

Clay Minerals as Lewis Acids. Lewis acid sites in a clay mineral are exchangeable (2) or structural ( 0) transition metal cations in the higher valence state, such as Fe + and Cu +, and octahedrally coordinated aluminum exposed at the crystal edges (38). Reduction of both exchanged and structural (octahedral) transition metal cations in the upper oxidation state is a reversible process (12,... [Pg.464]


See other pages where Aluminum oxidation state is mentioned: [Pg.241]    [Pg.241]    [Pg.11]    [Pg.433]    [Pg.7]    [Pg.169]    [Pg.411]    [Pg.176]    [Pg.197]    [Pg.1449]    [Pg.194]    [Pg.51]    [Pg.308]    [Pg.257]    [Pg.131]    [Pg.75]    [Pg.51]    [Pg.958]    [Pg.711]    [Pg.246]    [Pg.471]    [Pg.491]    [Pg.36]    [Pg.452]    [Pg.436]    [Pg.511]    [Pg.564]    [Pg.139]    [Pg.266]   
See also in sourсe #XX -- [ Pg.411 ]




SEARCH



Aluminum oxidation

Aluminum oxide

Aluminum oxidized

© 2024 chempedia.info