Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum epoxides

Comyn et have followed the pattern of joint strength decline of aluminum/epoxide joints in 100% RH at 122°F (50°C) for up to 10,000 hours. They obtained a decline during the first 2000 hours followed by a plateau condition. Some joint strength restoration was possible if the humidity was then lowered to 50%. They proposed an explanation in terms of the high permittivity of water and a weakening of ion-pairs at the interface. [Pg.253]

The effect of cyclic stresses on the durability of aluminum-epoxide joints has been observed by Briskham and Smith (2000), using a range of surface treatments. Joints were immersed in water at 55°C with average stress levels of approximately 0.15 or 1.2 MPa and a frequency of 2 Hz. The best performing treatment was phosphoric acid anodization and treatment with an amino.silane coupling agent was the poorest, which perhaps was not expected as this performed better than all the other methods with unstressed joints. Joints with phosphoric acid anodization consistently failed in a cohesive manner, while all the other methods showed some interfadal failure. [Pg.798]

The regioselectivity of the addition of terminal alkynes to epoxides is improved, when the reagents prepared from the lithiated alkynes and either trifluoroborane or chlorodiethyl-aluminum arc employed (M. Yamaguchi, 1983 S. Danishefsky, 1976). (Ethoxyethynyl)lithium-trifluoroborane (1 1) is a convenient reagent for converting epoxides to y-lactones (M. Naka-tsuka, 1990 see p. 327f. cf. S. Danishefsky, 1976). [Pg.64]

Epoxides are reduced to alcohols on treatment with lithium aluminum hydride Hydride is transferred to the less substituted carbon... [Pg.681]

Epoxidation of an alkene followed by lithium aluminum hydride reduction of the result mg epoxide gives the same alcohol that would be obtained by acid catalyzed hydration (Section 610) of the alkene... [Pg.681]

Additioaal uses for higher olefias iaclude the productioa of epoxides for subsequeat coaversioa iato surface-active ageats, alkylatioa of benzene to produce drag-flow reducers, alkylation of phenol to produce antioxidants, oligomeriza tion to produce synthetic waxes (qv), and the production of linear mercaptans for use in agricultural chemicals and polymer stabilizers. Aluminum alkyls can be produced from a-olefias either by direct hydroalumination or by transalkylation. In addition, a number of heavy olefin streams and olefin or paraffin streams have been sulfated or sulfonated and used in the leather (qv) iadustry. [Pg.442]

Another synthesis of the cortisol side chain from a C17-keto-steroid is shown in Figure 20. Treatment of a C3-protected steroid 3,3-ethanedyidimercapto-androst-4-ene-ll,17-dione [112743-82-5] (144) with a tnhaloacetate, 2inc, and a Lewis acid produces (145). Addition of a phenol and potassium carbonate to (145) in refluxing butanone yields the aryl vinyl ether (146). Concomitant reduction of the C20-ester and the Cll-ketone of (146) with lithium aluminum hydride forms (147). Deprotection of the C3-thioketal, followed by treatment of (148) with y /(7-chlotopetben2oic acid, produces epoxide (149). Hydrolysis of (149) under acidic conditions yields cortisol (29) (181). [Pg.434]

Methylene chloride is one of the more stable of the chlorinated hydrocarbon solvents. Its initial thermal degradation temperature is 120°C in dry air (1). This temperature decreases as the moisture content increases. The reaction produces mainly HCl with trace amounts of phosgene. Decomposition under these conditions can be inhibited by the addition of small quantities (0.0001—1.0%) of phenoHc compounds, eg, phenol, hydroquinone, -cresol, resorcinol, thymol, and 1-naphthol (2). Stabilization may also be effected by the addition of small amounts of amines (3) or a mixture of nitromethane and 1,4-dioxane. The latter diminishes attack on aluminum and inhibits kon-catalyzed reactions of methylene chloride (4). The addition of small amounts of epoxides can also inhibit aluminum reactions catalyzed by iron (5). On prolonged contact with water, methylene chloride hydrolyzes very slowly, forming HCl as the primary product. On prolonged heating with water in a sealed vessel at 140—170°C, methylene chloride yields formaldehyde and hydrochloric acid as shown by the following equation (6). [Pg.519]

Further dechlorination may occur with the formation of substituted diphenyhnethanes. If enough aluminum metal is present, the Friedel-Crafts reactions involved may generate considerable heat and smoke and substantial amounts of hydrogen chloride, which reacts with more aluminum metal, rapidly forming AlCl. The addition of an epoxide inhibits the initiation of this reaction by consuming HCl. Alkali, alkaline-earth, magnesium, and zinc metals also present a potential reactivity hazard with chlorinated solvents such as methylene chloride. [Pg.519]

When heated in the presence of a carboxyHc acid, cinnamyl alcohol is converted to the corresponding ester. Oxidation to cinnamaldehyde is readily accompHshed under Oppenauer conditions with furfural as a hydrogen acceptor in the presence of aluminum isopropoxide (44). Cinnamic acid is produced directly with strong oxidants such as chromic acid and nickel peroxide. The use of t-butyl hydroperoxide with vanadium pentoxide catalysis offers a selective method for epoxidation of the olefinic double bond of cinnamyl alcohol (45). [Pg.175]

Lithium aluminum hydride (LiAlH4) is the most powerful of the hydride reagents. It reduces acid chlorides, esters, lactones, acids, anhydrides, aldehydes, ketones and epoxides to alcohols amides, nitriles, imines and oximes to amines primary and secondary alkyl halides and toluenesulfonates to... [Pg.61]

The course of the ring opening in epoxides derived from various exocyclic methylene compounds by treatment with lithium aluminum deuteride has been studied in the norbornane series. ... [Pg.205]

Some instances of incomplete debromination of 5,6-dibromo compounds may be due to the presence of 5j5,6a-isomer of wrong stereochemistry for anti-coplanar elimination. The higher temperature afforded by replacing acetone with refluxing cyclohexanone has proved advantageous in some cases. There is evidence that both the zinc and lithium aluminum hydride reductions of vicinal dihalides also proceed faster with diaxial isomers (ref. 266, cf. ref. 215, p. 136, ref. 265). The chromous reduction of vicinal dihalides appears to involve free radical intermediates produced by one electron transfer, and is not stereospecific but favors tra 5-elimination in the case of vic-di-bromides. Chromous ion complexed with ethylene diamine is more reactive than the uncomplexed ion in reduction of -substituted halides and epoxides to olefins. ... [Pg.340]

The azidohydrins obtained by azide ion opening of epoxides, except for those possessing a tertiary hydroxy group, can be readily converted to azido mesylates on treatment with pyridine/methanesulfonyl chloride. Reduction and subsequent aziridine formation results upon reaction with hydrazine/ Raney nickel, lithium aluminum hydride, or sodium borohydride/cobalt(II)... [Pg.27]

The configurations assigned to (8) and (9) were established by comparison with the products resulting from epoxidation of 3-methyl-5a-cholest-2-ene followed by reduction with lithium aluminum hydride to the alcohol (9). The usual /ra 5-diaxial epoxide opening requires that the hydroxyl group, formed by reduction, is axial as shown in (9). [Pg.57]

Reductive Opening of a 17a,20-Epoxide 17a,20-Oxidopregn-4-en-3-one (0.7 g) in 90 ml of dioxane (previously distilled over sodium) is added gradually to a solution of 1 g of lithium aluminum hydride in 50 ml of dry ether. [Pg.164]

To overcome this, the A -acetyl group is reduced with lithium aluminum hydride. The resulting basic enamine then reacts extremely rapidly and selectively with peracid. The derived epoxide is hydrolyzed very easily with alkali during the workup. [Pg.189]

Ring opening of epoxides and some other transformations of heterocycles on aluminum oxide 97T7999. [Pg.244]

Epoxides are reduced by treatment with lithium aluminum hydride to yield alcohols. Propose a mechanism for this reaction. [Pg.680]

Epoxides from aldehydes, 46, 44 Equatorial alcohols, preparation by use of the lithium aluminum hydride-aluminum chloride reagent, 47, 19... [Pg.129]

The effect of a catalyst is important in cationic copolymerizations. Epoxides and /3-lactones form random copolymers only with trialkyl aluminum catalysts. Unusual sequence distributions were observed in the cationic copolymerization of epoxides or lactones using Lewis acids175-177) have been attributed to the di-... [Pg.16]

Another method involves treatment with Lawesson s reagent (see 16-10). When epoxides are substrates, the products are 3-hydroxy thiols. Tertiary nitro compounds give thiols (RNO2 RSH) when treated with sulfur and sodium sulfide, followed by amalgamated aluminum. [Pg.496]

The preparation of Pans-1,2-cyclohexanediol by oxidation of cyclohexene with peroxyformic acid and subsequent hydrolysis of the diol monoformate has been described, and other methods for the preparation of both cis- and trans-l,2-cyclohexanediols were cited. Subsequently the trans diol has been prepared by oxidation of cyclohexene with various peroxy acids, with hydrogen peroxide and selenium dioxide, and with iodine and silver acetate by the Prevost reaction. Alternative methods for preparing the trans isomer are hydroboration of various enol derivatives of cyclohexanone and reduction of Pans-2-cyclohexen-l-ol epoxide with lithium aluminum hydride. cis-1,2-Cyclohexanediol has been prepared by cis hydroxylation of cyclohexene with various reagents or catalysts derived from osmium tetroxide, by solvolysis of Pans-2-halocyclohexanol esters in a manner similar to the Woodward-Prevost reaction, by reduction of cis-2-cyclohexen-l-ol epoxide with lithium aluminum hydride, and by oxymercuration of 2-cyclohexen-l-ol with mercury(II) trifluoro-acetate in the presence of ehloral and subsequent reduction. ... [Pg.88]

The stereochemistry of the first step was ascertained by an X-ray analysis [8] of an isolated oxazaphospholidine 3 (R = Ph). The overall sequence from oxi-rane to aziridine takes place with an excellent retention of chiral integrity. As the stereochemistry of the oxirane esters is determined by the chiral inductor during the Sharpless epoxidation, both enantiomers of aziridine esters can be readily obtained by choosing the desired antipodal tartrate inductor during the epoxidation reaction. It is relevant to note that the required starting allylic alcohols are conveniently prepared by chain elongation of propargyl alcohol as a C3 synthon followed by an appropriate reduction of the triple bond, e. g., with lithium aluminum hydride [6b]. [Pg.95]

Yasuda, T., Aida, T., and Inoue, S., Reactivity of (por-phinato)aluminum phenoxide and alkoxide as active initiators for polymerization of epoxide and lactone. Bull. Chem. Soc. Jap.. 9, 3931-3934, 1986. [Pg.115]

Reductive opening of the oxirane ring of 193 with lithium aluminum hydride, and acetylation, provided compound 194. Epoxidation of 194 with mCPB A gave the epoxide 195. Opening of the oxirane ring with acetate ions, followed by acetylation, gave the tetraacetate 196, or, by exhaustive acetylation with acetic anhydride-DMAP, the pentaacetate 189. Compounds 196 and 189 were readily transformed into 190 by hydrolysis. " ... [Pg.51]


See other pages where Aluminum epoxides is mentioned: [Pg.308]    [Pg.209]    [Pg.366]    [Pg.476]    [Pg.376]    [Pg.299]    [Pg.163]    [Pg.332]    [Pg.33]    [Pg.35]    [Pg.176]    [Pg.193]    [Pg.155]    [Pg.200]    [Pg.429]    [Pg.431]    [Pg.666]    [Pg.766]    [Pg.739]    [Pg.444]    [Pg.82]    [Pg.708]    [Pg.1206]    [Pg.28]   
See also in sourсe #XX -- [ Pg.881 ]

See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Aluminum chloride epoxide reduction

Aluminum compounds alkene epoxidation

Aluminum epoxide ring

Aluminum hydride, diisobutyl- (DIBAL epoxides

Epoxides diethyl aluminum

Epoxides with lithium aluminum

Epoxides with lithium aluminum hydride

Epoxides, reaction with aluminum borohydride

Lithium aluminum deuteride epoxides

Lithium aluminum hydride alcohol synthesis from epoxides

Lithium aluminum hydride epoxides

Lithium aluminum hydride, reducing epoxides

Reduction epoxide, lithium aluminum hydride

Sodium bis aluminum hydride epoxides

© 2024 chempedia.info