Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum alloys corrosion rates

Aluminum and aluminum alloys are employed in many appHcations because of the abiHty to resist corrosion. Corrosion resistance is attributable to the tightly adherent, protective oxide film present on the surface of the products. This film is 5 —10 nm thick when formed in air if dismpted it begins to form immediately in most environments. The weathering characteristics of several common aluminum alloy sheet products used for architectural appHcations are shown in Eigure 30. The loss in strength as a result of atmospheric weathering and corrosion is small, and the rate decreases with time. The amount of... [Pg.124]

Figure 8.1 Effect of pH on corrosion of 1100-H14 alloy (aluminum) by various chemical solutions. Observe the minimal corrosion in the pH range of 4-9. The low corrosion rates in acetic acid, nitric acid, and ammonium hydroxide demonstrate that the nature of the individual ions in solution is more important than the degree of acidity or alkalinity. (Courtesy of Alcoa Laboratories from Aluminum Properties and Physical Metallurgy, ed. John E. Hatch, American Society for Metals, Metals Park, Ohio, 1984, Figure 19, page 295.)... Figure 8.1 Effect of pH on corrosion of 1100-H14 alloy (aluminum) by various chemical solutions. Observe the minimal corrosion in the pH range of 4-9. The low corrosion rates in acetic acid, nitric acid, and ammonium hydroxide demonstrate that the nature of the individual ions in solution is more important than the degree of acidity or alkalinity. (Courtesy of Alcoa Laboratories from Aluminum Properties and Physical Metallurgy, ed. John E. Hatch, American Society for Metals, Metals Park, Ohio, 1984, Figure 19, page 295.)...
Aluminum alloys are corroded at both high and low pH. Not all compounds that increase pH cause severe attack. Ammonium hydroxide only moderately increases corrosion rates. Wastage actually decreases above a pH of 12 in ammonium hydroxide solutions (see Fig. 8.1). A caustic solution causes corrosion rates to increase substantially as pH rises. The Al ion reacts vigorously with OH to produce A102. ... [Pg.189]

Inhibiting the corrosion of aluminum alloys by adding 1-5% of transition metals is a dramatic case of corrosion protection because of the small amounts of additives that are successful in reducing the corrosion rate by 1-2 orders of magnitude. It turns out that the alloying materials shift the pzc toward the positive side on the potential scale. Thus, in many practical situations, the alloys of the transition metals are in a... [Pg.260]

The chemical cleaning methods used for aluminum will have slightly different effectiveness with different aluminum alloys. The permanence of these bonds will also depend on the type of alloys used because of their different corrosion rates under extreme environmental conditions. The yield strength of the alloy also has an influence on bond strength when stressed in shear. The peel test is usually considered a more meaningful... [Pg.350]

Although the degree of atmospheric corrosion of copper and its alloys depends upon the corrosive agents present, the corrosion rate has been found to generally decrease with time. The copper and its alloys such as silicon bronze, tin bronze usually corrode at moderate rates, while brass, aluminum bronze, nickel silver, and copper-nickel corrode at a slower rate.51 The most commonly used copper alloys are Cl 1000, C22000, C38500 and C75200. [Pg.238]

The film of magnesium hydroxide formed can give rise to passivity. This is attacked by anions such as chloride, sulfate and nitrate. The passive film formed gives reasonable protection from corrosion in rural, marine and industrial atmospheres, as evidenced by the corrosion rate data given in Table 4.69. It is obvious from the data that the corrosion performance of magnesium alloy lies between aluminum and carbon steel. [Pg.277]

Chemical passivity corresponds to the state where the metal surface is stable or substantially unchanged in a solution with which it has a thermodynamic tendency to react. The surface of a metal or alloy in aqueous or organic solvent is protected from corrosion by a thin film (1—4 nm), compact, and adherent oxide or oxyhydroxide. The metallic surface is characterized by a low corrosion rate and a more noble potential. Aluminum, magnesium, chromium and stainless steels passivate on exposure to natural or certain corrosive media and are used because of their active-passive behavior. Stainless steels are excellent examples and are widely used because of their stable passive films in numerous natural and industrial media.6... [Pg.334]

Galvanostatic methods for localized corrosion. At constant chosen currents, the evolution of potential as a function of time is recorded until the rate of change in potential with time approaches zero. This technique is under development for aluminum alloys in ASTM Gl4 as a test method for application to aluminum alloys. (Scully)14... [Pg.366]

Steel phases have an influence on the rate of corrosion. Ferrite has a weak resistance to pitting. The presence of martensite can increase the hydrogen fragilization of steel. Intermetallic phases as Fe2Mo in high Ni content alloys can influence the corrosion resistance. The precipitate CuA12 in aluminum alloys the series 2000 is more noble than the matrix, with corrosion around the precipitate. The majority of case histories reported in the literature have involved austenitic stainless steels, aluminum alloys, and to a lesser degree, some ferritic stainless steels and nickel-based alloys.31... [Pg.376]

Uniform corrosion usually occurs in fairly aggressive environments that attack the whole surface. Examples include carbon steel in seawater or acids, or aluminum alloys in strong alkali. The rate of metal loss is usually rather high, but, because it is distributed over the whole surface, the performance can usually be predicted, and managed with corrosion allowances, in most situations. Thus, sheet steel piling is often used in seawater without any corrosion protection, the corrosion rate of around 0.1 mm/yr, coupled with the relatively thick steel sections, giving an acceptable life. [Pg.551]

For crevices such as in those in socket welds, the metal in the crevice is likely to be anodic. Crevice corrosion and under-deposit corrosion can be serious problems in oxide-stabilized materials such as aluminum and the stainless steels. Crevices and deposits can also accelerate corrosion in metals (such as carbon steel) that do not exhibit both active and passive states. However, the rate of corrosion is much slower in such materials because they lack the galvanic driving force of the active-passive states characteristic of the oxide-stabilized metals and alloys. The anode areas in crevices and under deposits are typically smaller than the cathode areas. This difference accelerates the corrosion rate. [Pg.1562]

Pitting corrosion is usually associated with active-passive-type alloys and occurs under conditions specific to each alloy and environment. This mode of localized attack is of major commercial significance since it can severely limit performance in circumstances where, otherwise, the corrosion rates are extremely low. Susceptible alloys include the stainless steels and related alloys, a wide series of alloys extending from iron-base to nickel-base, aluminum, and aluminum-base alloys, titanium alloys, and others of commercial importance but more limited in use. In all of these alloys, the polarization curves in most media show a rather sharp transition from active dissolution to a state of passivity characterized by low current density and, hence, low corrosion rate. As emphasized in Chapter 5, environments that maintain the corrosion potential in the passive potential range generally exhibit extremely low... [Pg.277]


See other pages where Aluminum alloys corrosion rates is mentioned: [Pg.156]    [Pg.556]    [Pg.55]    [Pg.130]    [Pg.323]    [Pg.332]    [Pg.138]    [Pg.45]    [Pg.136]    [Pg.189]    [Pg.1294]    [Pg.894]    [Pg.446]    [Pg.215]    [Pg.289]    [Pg.136]    [Pg.246]    [Pg.5]    [Pg.77]    [Pg.341]    [Pg.502]    [Pg.52]    [Pg.13]    [Pg.85]    [Pg.559]    [Pg.1580]    [Pg.205]    [Pg.275]    [Pg.366]    [Pg.391]    [Pg.405]    [Pg.413]    [Pg.419]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Aluminum alloys corrosion

Aluminum corrosion

Aluminum corrosion rate

Corrosion alloying

© 2024 chempedia.info