Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic alkylations nickel

The second pathway is represented by Eqs. (8)—(11). These reactions involve reduction of the Nin halide to a Ni° complex in a manner similar to the generation of Wilke s bare nickel (37, 38) which can form a C8 bis-77-alkyl nickel (17) in the presence of butadiene [Eq. (9)]. It is reasonable to assume that in the presence of excess alkyaluminum chloride, an exchange reaction [Eq. (10)] can take place between the Cl" on the aluminum and one of the chelating 7r-allyls to form a mono-77-allylic species 18. Complex 18 is functionally the same as 16 under the catalytic reaction condition and should be able to undergo additional reaction with a coordinated ethylene to begin a catalytic cycle similar to Scheme 4 of the Rh system. The result is the formation of a 1,4-diene derivative similar to 13 and the generation of a nickel hydride which then interacts with a butadiene to form the ever-important 7r-crotyl complex [Eq. (11)]. [Pg.292]

Asymmetric nickel-catalyzed allylic alkylation with soft carbon-centered nucleophiles was reported in 1996 by Mortreux and his co-workers. Use of a catalytic amount of [Ni(cod)2] together with chiral diphosphines 138 promotes the allylic alkylation of a cyclic ester such as 2-cyclohexenyl acetate with dimethyl malonate in the presence of BSA and gives the corresponding alkylated compounds only with a moderate enantioselectivity (40% ee) (Equation (42)). [Pg.103]

An interesting use of the nickel-catalyzed allylic alkylation has prochiral allylic ketals as substrate (Scheme 8E.47) [206]. In contrast to the previous kinetic-resolution process, the enantioselectivity achieved in the ionization step is directly reflected in the stereochemical outcome of the reaction. Thus, the commonly observed variation of the enantioselectivity with respect to the structure of the nucleophile is avoided in this type of reaction. Depending on the method of isolation, the regio- and enantioselective substitution gives an asymmetric Michael adduct or an enol ether in quite good enantioselectivity to provide further synthetic flexibility. [Pg.640]

Asymmetric allylboration, characteristics, 9, 197 Asymmetric allylic alkylation, allylic alcohols with copper, 11, 99 with iridium, 11, 105 with molybdenum, 11, 109 with nickel, 11, 102 with non-palladium catalysts, 11, 98 with platinum, 11, 103 reaction systems, 11, 112 with rhodium, 11, 104 with ruthenium, 11, 108 with tungsten, 11, 111... [Pg.59]

In 1965, Tsuji et al. observed that palladium could catalyze the allylic alkylation reaction [18]. This discovery, which is a very attractive way to expand the scope of the allylic amination reactions mentioned above, has stimulated an intense research in this field, and even though complexes of nickel, platinum, rhodium, iron, ruthenium, molybdenum, cobalt, and tungsten have been found also to catalyze the alkylation, palladium complexes have received by far the greatest attention [19]. [Pg.10]

Diphenylmethylene)cyclopropane (7) reacts with a variety of alkenes, including cyclopentene and vinyl compounds, in the presence of palladium(O) catalysts, but higher reaction temperatures are required. Whereas a 68% yield of 2-(diphenylmethyIene)octahydropentalene [8 R , R = —(CHjjj—] is obtained from cyclopentene with a palladium(O) catalyst at 130°C, naked nickel at 120°C only induces allylic alkylation of the cyclopentene to yield 70% of 3-(2-... [Pg.2252]

The allylic alkylation with weak nucleophiles employing nickel catalysts is generally not as efficient as the corresponding palladium-catalyzed methods. However, allylic acetates, allyl phenyl ethers, and allylic carbonates undergo efficient couplings with amines, phenols, and malonates in the presence of nickel(O) catalysts (Scheme 25). ... [Pg.23]

Another synthetically useful reaction is catalytic allylic alkylation (Eq. 12.81). With this reaction, the X group can be a halogen, as well as other commonly available substrates such as acetate or carbamate. The synthetic utility derives mostly from stereochemical control, which is briefly introduced in the Connections highlight below. This reaction is widespread in organometallic chemistry and has been found to be catalyzed by a variety of metals, including nickel, palladium, platinum, rhodium, iron, ruthenium, molybdenum, and tungsten. [Pg.743]

Nickel-allyl complexes prepared from Ni(CO)4 and allyl bromides are useful for the ole-fination of alkyl bromides and iodides (E.J. Corey, 1967 B A.P. Kozikowski, 1976). The reaction has also been extended to the synthesis of macrocycles (E.J. Corey, 1967 C, 1972A). [Pg.42]

Methylsuccinic acid has been prepared by the pyrolysis of tartaric acid from 1,2-dibromopropane or allyl halides by the action of potassium cyanide followed by hydrolysis by reduction of itaconic, citraconic, and mesaconic acids by hydrolysis of ketovalerolactonecarboxylic acid by decarboxylation of 1,1,2-propane tricarboxylic acid by oxidation of /3-methylcyclo-hexanone by fusion of gamboge with alkali by hydrog. nation and condensation of sodium lactate over nickel oxide from acetoacetic ester by successive alkylation with a methyl halide and a monohaloacetic ester by hydrolysis of oi-methyl-o -oxalosuccinic ester or a-methyl-a -acetosuccinic ester by action of hot, concentrated potassium hydroxide upon methyl-succinaldehyde dioxime from the ammonium salt of a-methyl-butyric acid by oxidation with. hydrogen peroxide from /9-methyllevulinic acid by oxidation with dilute nitric acid or hypobromite from /J-methyladipic acid and from the decomposition products of glyceric acid and pyruvic acid. The method described above is a modification of that of Higginbotham and Lapworth. ... [Pg.56]

Metallocorroles (M = Cu, Ni or Pd) can also be alkylated under the same conditions as the metal-free corroles23,24 to give the N2i-alkylated products together with a small amount of C3 alkylated product ( f = Pd). Allyl halides or bulky alkyl halides react with nickel corroles also at the 3-position. [Pg.671]

Stable enolates such as diethyl malonate anions react with allyl sulfones (or acetates) in the presence of nickel complexes to give a mixture of the a- and /-product83. The regioselectivity is generally poor in the nickel-catalyzed reaction, but the molybdenum-catalyzed reaction is selective for alkylation at the more substituted allylic site, thereby creating a quaternary carbon center84. [Pg.878]

The electrochemistry of cobalt-salen complexes in the presence of alkyl halides has been studied thoroughly.252,263-266 The reaction mechanism is similar to that for the nickel complexes, with the intermediate formation of an alkylcobalt(III) complex. Co -salen reacts with 1,8-diiodo-octane to afford an alkyl-bridged bis[Co" (salen)] complex.267 Electrosynthetic applications of the cobalt-salen catalyst are homo- and heterocoupling reactions with mixtures of alkylchlorides and bromides,268 conversion of benzal chloride to stilbene with the intermediate formation of l,2-dichloro-l,2-diphenylethane,269 reductive coupling of bromoalkanes with an activated alkenes,270 or carboxylation of benzylic and allylic chlorides by C02.271,272 Efficient electroreduc-tive dimerization of benzyl bromide to bibenzyl is catalyzed by the dicobalt complex (15).273 The proposed mechanism involves an intermediate bis[alkylcobalt(III)] complex. [Pg.488]

Examples of w-allylnickel-X compounds (X = anionic ligand) other than 77-allylnickel halides which have been used in combination with (alkyl)aluminum halides as olefin oligomerization catalysts are 7r-allyl-nickel acetylacetonate (11) (Section III), 7r-allylnickel aziridide (4, 56), and bis(7r-allyl)nickel (6) (59). In addition to ir-allylnickel halides, organo-nickel halides such as tritylnickel chloride (60, 61) and pentafluoro-phenylbis(triphenylphosphine)nickel bromide (62), or hydridonickel halides, e.g., trans-hydridobis(triisopropylphosphine)nickel chloride (12) (Section III), give active catalysts after activation with aluminum halides... [Pg.112]


See other pages where Allylic alkylations nickel is mentioned: [Pg.872]    [Pg.874]    [Pg.272]    [Pg.75]    [Pg.102]    [Pg.103]    [Pg.593]    [Pg.639]    [Pg.640]    [Pg.51]    [Pg.72]    [Pg.612]    [Pg.178]    [Pg.177]    [Pg.281]    [Pg.7]    [Pg.227]    [Pg.62]    [Pg.133]    [Pg.57]    [Pg.593]    [Pg.639]    [Pg.18]    [Pg.528]    [Pg.541]    [Pg.563]    [Pg.1029]    [Pg.311]    [Pg.266]   
See also in sourсe #XX -- [ Pg.969 , Pg.970 ]




SEARCH



Alkylation allylic allylation

Allylic alkylation

Allylic alkylations

Allyls nickel

Nickel alkylation

Nickel alkyls

Nickel allylation

© 2024 chempedia.info