Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sharpless asymmetric allylic alcohols

ASYMMETRIC EPOXIDATION OF ALLYLIC ALCOHOLS SHARPLESS EPOXIDATION... [Pg.195]

The Sharpless Epoxidation allows the enantioselective epoxidation of prochiral allylic alcohols. The asymmetric induction is achieved by adding an enantiomerically enriched tartrate derivative. [Pg.212]

Asymmetric epoxidation of homoallylic alcohols. Sharpless asymmetric epoxidation of primary homoallylic alcohols with l-( + )-diethyl tartrate proceeds with only moderate enantiomeric selectivity (23-55% ee) and opposite to that observed with allylic alcohols. Unfortunately, operation at low temperatures to improve the enantiomeric excess also retards the rate drastically. Even so, this epoxidation provides a useful synthesis of (-l-)--y-amino-P(R)-hydroxybutyric acid (1). [Pg.90]

Chiral Ligand for Asymmetric Catalysis. Dimethyl l-tartrate is a demonstrated chiral ligand for the Ti -catalyzed asymmetric epoxidation of allylic alcohols (Sharpless epoxidation), and the Zn -mediated asymmetric cyclo-propanation of allylic alcohols (Simmons-Smith reaction), see lodomethylzinc Iodide Enantioselectivities in these reactions... [Pg.269]

Johnson, R. A., Sharpless, K. B. Catalytic asymmetric epoxidation of allylic alcohols. Catal. Asymmetric Synth. (2nd Edition) 2000, 231-280. [Pg.675]

We will see Sharpless epoxidation reactions in the Double Methods section towards the end of the chapter. Interestingly, Sharpless other famous asymmetric method - dihydroxylation - has not found widespread use in kinetic resolution. This is probably because the AD is just too powerful or, to be anthropomorphic, too wilful. In other words, it is not sensitive to the chirality of the substrate and charges ahead and reacts with both enantiomers. That is not to say there are not examples of kinetic resolution with dihydroxylation,19 but they are more rare. However, the dihydroxylation is even more useful and much more general than the kinetic resolution of allylic alcohols by asymmetric epoxidation and was discussed in Chapter 25. A slightly complicated case of kinetic resolution of alcohols by asymmetric dihydroxylation is in the Double Methods section. [Pg.635]

The original report on the titanium-catalysed asymmetric epoxidation of allylic alcohols (Sharpless system) prescribed stoichiometric amounts of the titanium tartrate catalyst in the general procedure and many applications of this asymmetric epoxidation have been carried out using stoichiometric or near-stoichiometric amounts of the catalyst. Sharpless has reported the first general procedure for the asymmetric epoxidation of allylic alcohols using catalytic ( <10 %) amounts of titanium(IV) isopropoxide and diethyl tartrate. [Pg.398]

Sharpless epoxidation of allyl alcohols (Sharpless, 1985, 1988 Pfenninger, 1986 Rossiter, 1985 Woodard et al., 1991 Finn and Sharpless, 1991 Corey, I990a,b), an example of which is included in Table 9.6, is perhaps the most recent and one of the most remarkable applications of asymmetric catalysis. The reaction is normally performed at low temperatures (-30 to 0°C) in methylene chloride with a titanium complex consisting of a chiral component [diethyl tartrate (DET) or diisopropyl tartrate (DIPT)] and a titanium salt (titanium tetraisopropoxide) as the catalyst. The beauty of the synthesis is that both enantiomers of the tartrate are available so that either form of the product can be prepared in more than 90% ee. [Pg.266]

Sharpless asymmetric epoxidation (SAE) is the epoxidation of allylic alcohols into asymmetric epoxides in high chiral purity (high enantioselectiv-ity). Transition metal catalyst Ti(OPr ) with chiral additive, diethyl tartarate (DET), generates chiral catalyst (Scheme 9.40) which is responsible for the enantioselective outcome, while, tert-butyl hydroperoxide (TBHP) serves as an oxidant. Although, this eatalytic system holds disadvantage of low turnover number (TON) with potential safety coneems for using concentrated solutions of peroxides, the reaction has nevertheless been extensively used in pharmaceutical industry [76]. [Pg.356]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

A catalytic enantio- and diastereoselective dihydroxylation procedure without the assistance of a directing functional group (like the allylic alcohol group in the Sharpless epox-idation) has also been developed by K.B. Sharpless (E.N. Jacobsen, 1988 H.-L. Kwong, 1990 B.M. Kim, 1990 H. Waldmann, 1992). It uses osmium tetroxide as a catalytic oxidant (as little as 20 ppm to date) and two readily available cinchona alkaloid diastereomeis, namely the 4-chlorobenzoate esters or bulky aryl ethers of dihydroquinine and dihydroquinidine (cf. p. 290% as stereosteering reagents (structures of the Os complexes see R.M. Pearlstein, 1990). The transformation lacks the high asymmetric inductions of the Sharpless epoxidation, but it is broadly applicable and insensitive to air and water. Further improvements are to be expected. [Pg.129]

The Sharpless-Katsuki asymmetric epoxidation reaction (most commonly referred by the discovering scientists as the AE reaction) is an efficient and highly selective method for the preparation of a wide variety of chiral epoxy alcohols. The AE reaction is comprised of four key components the substrate allylic alcohol, the titanium isopropoxide precatalyst, the chiral ligand diethyl tartrate, and the terminal oxidant tert-butyl hydroperoxide. The reaction protocol is straightforward and does not require any special handling techniques. The only requirement is that the reacting olefin contains an allylic alcohol. [Pg.50]

In 1980, Katsuki and Sharpless communicated that the epoxidation of a variety of allylic alcohols was achieved in exceptionally high enantioselectivity with a catalyst derived from titanium(IV) isopropoxide and chiral diethyl tartrate. This seminal contribution described an asymmetric catalytic system that not only provided the product epoxide in remarkable enantioselectivity, but showed the immediate generality of the reaction by examining 5 of the 8 possible substitution patterns of allylic alcohols all of which were epoxidized in >90% ee. Shortly thereafter. Sharpless and others began to illustrate the... [Pg.50]

The asymmetric epoxidation of an allylic alcohol 1 to yield a 2,3-epoxy alcohol 2 with high enantiomeric excess, has been developed by Sharpless and Katsuki. This enantioselective reaction is carried out in the presence of tetraisopropoxyti-tanium and an enantiomerically pure dialkyl tartrate—e.g. (-1-)- or (-)-diethyl tartrate (DET)—using tcrt-butyl hydroperoxide as the oxidizing agent. [Pg.254]

The essential features of the Masamune-Sharpless hexose synthesis strategy are outlined in a general way in Scheme 4. The strategy is based on the reiterative- application of a two-carbon extension cycle. One cycle comprises the following four key transformations (I) homologation of an aldehyde to an allylic alcohol (II) Sharpless asymmetric epoxidation of the allylic alcohol ... [Pg.298]

The emergence of the powerful Sharpless asymmetric epoxida-tion (SAE) reaction in the 1980s has stimulated major advances in both academic and industrial organic synthesis.14 Through the action of an enantiomerically pure titanium/tartrate complex, a myriad of achiral and chiral allylic alcohols can be epoxidized with exceptional stereoselectivities (see Chapter 19 for a more detailed discussion). Interest in the SAE as a tool for industrial organic synthesis grew substantially after Sharpless et al. discovered that the asymmetric epoxidation process can be conducted with catalytic amounts of the enantiomerically pure titanium/tartrate complex simply by adding molecular sieves to the epoxidation reaction mix-... [Pg.345]

The construction of key intermediate 18 can be conducted along similar lines. Sharpless asymmetric epoxidation of allylic alcohol 22 using (+)-DET furnishes epoxy alcohol 52b (Scheme 11). Subjection of the latter substance to the same six-step reaction sequence as that leading to 54a provides allylic alcohol 54b and sets the stage for a second SAE reaction. With (+)-DET as the... [Pg.436]

A noteworthy feature of the Sharpless Asymmetric Epoxidation (SAE) is that kinetic resolution of racemic mixtures of chiral secondary allylic alcohols can be achieved, because the chiral catalyst reacts much faster with one enantiomer than with the other. A mixture of resolved product and resolved starting material results which can usually be separated chromatographically. Unfortunately, for reasons that are not yet fully understood, the AD is much less effective at kinetic resolution than the SAE. [Pg.686]

The Sharpless-Katsuki asymmetric epoxidation (AE) procedure for the enantiose-lective formation of epoxides from allylic alcohols is a milestone in asymmetric catalysis [9]. This classical asymmetric transformation uses TBHP as the terminal oxidant, and the reaction has been widely used in various synthetic applications. There are several excellent reviews covering the scope and utility of the AE reaction... [Pg.188]

Asymmetric epoxidations of alkenes have been intensively studied since Sharpless initial report on asymmetric epoxidation of allylic alcohols in 1980. This reaction, discussed in Section 9.1.3, has become one of the most widely employed reactions in asymmetric synthesis, due to its reliability and high enantioselectivity [2],... [Pg.315]

Ten years after Sharpless s discovery of the asymmetric epoxidation of allylic alcohols, Jacobsen and Katsuki independently reported asymmetric epoxidations of unfunctionalized olefins by use of chiral Mn-salen catalysts such as 9 (Scheme 9.3) [14, 15]. The reaction works best on (Z)-disubstituted alkenes, although several tri-and tetrasubstituted olefins have been successfully epoxidized [16]. The reaction often requires ligand optimization for each substrate for high enantioselectivity to be achieved. [Pg.318]

The development of Sharpless asymmetric epoxidation (SAE) of allylic alcohols in 1980 constitutes a breakthrough in asymmetric synthesis, and to date this method remains the most widely applied asymmetric epoxidation technique [34, 44]. A wide range of substrates can be used in the reaction ( ) -allylic alcohols generally give high enantioselectivity, whereas the reaction is more substrate-dependent with (Z)-allylic alcohols [34]. [Pg.322]

The past thirty years have witnessed great advances in the selective synthesis of epoxides, and numerous regio-, chemo-, enantio-, and diastereoselective methods have been developed. Discovered in 1980, the Katsuki-Sharpless catalytic asymmetric epoxidation of allylic alcohols, in which a catalyst for the first time demonstrated both high selectivity and substrate promiscuity, was the first practical entry into the world of chiral 2,3-epoxy alcohols [10, 11]. Asymmetric catalysis of the epoxidation of unfunctionalized olefins through the use of Jacobsen s chiral [(sale-i i) Mi iln] [12] or Shi s chiral ketones [13] as oxidants is also well established. Catalytic asymmetric epoxidations have been comprehensively reviewed [14, 15]. [Pg.447]

Previous syntheses of terminal alkynes from aldehydes employed Wittig methodology with phosphonium ylides and phosphonates. 6 7 The DuPont procedure circumvents the use of phosphorus compounds by using lithiated dichloromethane as the source of the terminal carbon. The intermediate lithioalkyne 4 can be quenched with water to provide the terminal alkyne or with various electrophiles, as in the present case, to yield propargylic alcohols, alkynylsilanes, or internal alkynes. Enantioenriched terminal alkynylcarbinols can also be prepared from allylic alcohols by Sharpless epoxidation and subsequent basic elimination of the derived chloro- or bromomethyl epoxide (eq 5). A related method entails Sharpless asymmetric dihydroxylation of an allylic chloride and base treatment of the acetonide derivative.8 In these approaches the product and starting material contain the same number of carbons. [Pg.87]


See other pages where Sharpless asymmetric allylic alcohols is mentioned: [Pg.432]    [Pg.529]    [Pg.432]    [Pg.529]    [Pg.514]    [Pg.417]    [Pg.417]    [Pg.277]    [Pg.518]    [Pg.204]    [Pg.470]    [Pg.26]    [Pg.51]    [Pg.295]    [Pg.303]    [Pg.310]    [Pg.429]    [Pg.431]    [Pg.434]    [Pg.436]    [Pg.501]    [Pg.702]    [Pg.766]    [Pg.769]    [Pg.272]    [Pg.826]   


SEARCH



Allylic alcohols Sharpless asymmetric epoxidation

Allylic alcohols Sharpless-Katsuki asymmetric epoxidation

Allylic alcohols asymmetric

Asymmetric allylation

Catalytic Asymmetric Synthesis Sharpless Oxidations of Allylic alcohols

Sharpless

Sharpless asymmetric

Sharpless asymmetric epoxidatio of allylic alcohol

Sharpless asymmetric epoxidation of allylic alcohol

© 2024 chempedia.info